Aligning science and policy to achieve evolutionarily enlightened conservation

Authors: Carly N Cook and Carla M Sgrò

Published in: Conservation Biology (early view)


There is increasing recognition among conservation scientists that long-term conservation outcomes could be improved through better integration of evolutionary theory into management practices. Despite concerns that the importance of key concepts emerging from evolutionary theory (i.e., evolutionary principles and processes) are not being recognized by managers, there has been little effort to determine the level of integration of evolutionary theory into conservation policy and practice.

We assessed conservation policy at 3 scales (international, national, and provincial) on 3 continents to quantify the degree to which key evolutionary concepts, such as genetic diversity and gene flow, are being incorporated into conservation practice. We also evaluated the availability of clear guidance within the applied evolutionary biology literature as to how managers can change their management practices to achieve better conservation outcomes.

Despite widespread recognition of the importance of maintaining genetic diversity, conservation policies provide little guidance about how this can be achieved in practice and other relevant evolutionary concepts, such as inbreeding depression, are mentioned rarely. In some cases the poor integration of evolutionary concepts into management reflects a lack of decision-support tools in the literature. Where these tools are available, such as risk-assessment frameworks, they are not being adopted by conservation policy makers, suggesting that the availability of a strong evidence base is not the only barrier to evolutionarily enlightened management.

We believe there is a clear need for more engagement by evolutionary biologists with policy makers to develop practical guidelines that will help managers make changes to conservation practice. There is also an urgent need for more research to better understand the barriers to and opportunities for incorporating evolutionary theory into conservation practice.


Cook CN, Sgrò CM (2017) Aligning science and policy to achieve evolutionarily enlightened conservation. Conservation Biology, PDF DOI

The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change?

Authors: Evatt Chirgwin, Dustin J  Marshall, Carla M Sgrò, and Keyne Monro

Published in: Evolutionary Applications, volume 10, issue 3 (March 2017)


Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown.

Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments.

We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures).

Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world.


Chirgwin E, Marshall DJ, Sgrò CM, Monro K (2016) The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? Evolutionary Applications, PDF DOI