Cross-study comparison reveals common genomic, network, and functional signatures of desiccation resistance in Drosophila melanogaster

Authors: Marina Telonis-Scott, Carla M Sgrò, Ary A Hoffmann and Philippa C Griffin

Published in: Molecular Biology and Evolution (early view)


Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks.

Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years.

We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait.

By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses.

In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments.

Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework.


Telonis-Scott M, Sgrò CM, Hoffmann AA, Griffin PC (2016) Cross-study comparison reveals common genomic, network and functional signatures of desiccation resistance in Drosophila melanogasterMolecular Biology and Evolution PDF DOI

Is adaptation to climate change really constrained in niche specialists?

Authors: Belinda van Heerwaarden and Carla M Sgrò

Published in: Proceedings of the Royal Society B, volume 281, number 1790 (September 2014)


Species with restricted distributions make up the vast majority of biodiversity.

Recent evidence suggests that Drosophila species with restricted tropical distributions lack genetic variation in the key trait of desiccation resistance. It has therefore been predicted that tropically restricted species will be limited in their evolutionary response to future climatic changes and will face higher risks of extinction. However, these assessments have been made using extreme levels of desiccation stress (less than 10% relative humidity (RH)) that extend well beyond the changes projected for the wet tropics under climate change scenarios over the next 30 years.

Here, we show that significant evolutionary responses to less extreme (35% RH) but more ecologically realistic levels of climatic change and desiccation stress are in fact possible in two species of rainforest restricted Drosophila. Evolution may indeed be an important means by which sensitive rainforest-restricted species are able to mitigate the effects of climate change.


van Heerwaarden, B Sgrò CM (2014) Is adaptation to climate change really constrained in niche specialists? Proceedings of the Royal Society B 280(1790) PDF DOI