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Abstract

Resource managers have rarely accounted for evolutionary dynamics in the

design or implementation of climate change adaptation strategies. We brought

the research and management communities together to identify challenges and
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opportunities for applying evidence from evolutionary science to support on-

the-ground actions intended to enhance species' evolutionary potential. We

amalgamated input from natural-resource practitioners and interdisciplinary

scientists to identify information needs, current knowledge that can fill those

needs, and future avenues for research. Three focal areas that can guide

engagement include: (1) recognizing when to act, (2) understanding the feasi-

bility of assessing evolutionary potential, and (3) identifying best management

practices. Although researchers commonly propose using molecular methods

to estimate genetic diversity and gene flow as key indicators of evolutionary

potential, we offer guidance on several additional attributes (and their proxies)

that may also guide decision-making, particularly in the absence of genetic

data. Finally, we outline existing decision-making frameworks that can help

managers compare alternative strategies for supporting evolutionary potential,

with the goal of increasing the effective use of evolutionary information, particu-

larly for species of conservation concern. We caution, however, that arguing over

nuance can generate confusion; instead, dedicating increased focus on a decision-

relevant evidence base may better lend itself to climate adaptation actions.

KEYWORD S

climate change, evolutionary adaptive capacity, genomics, knowledge exchange, natural
resource management, policy, practitioner, researcher, threatened species

1 | INTRODUCTION

Species today face myriad anthropogenic stressors, all of
which can be exacerbated by contemporary climate
change. These layered selection pressures (i.e., forces
favoring sets of new trait values) are rapidly favoring
values falling outside the existing tolerance ranges of
many species (Wiens, 2016). Nevertheless, some species
exhibit rapid responses to stressors that demonstrate their
adaptive capacity, while others fail to respond. Adaptive
capacity is the intrinsic ability of a species to adjust to or
cope with environmental change (Nicotra et al., 2015). It
can include shifts in distribution and phenology, pheno-
typic plasticity, physiological acclimation, and microevo-
lutionary adaptation (Scheffers et al., 2016).

A key component of species' adaptive capacity to cli-
mate change is evolutionary potential (Beever et al., 2016;
Thurman et al., 2020). Evolutionary potential (or in the
language of climate change vulnerability and adaptation,
“evolutionary adaptive capacity”) is the ability of popula-
tions to evolve genetically based changes in traits in
response to environmental change (Steeves et al., 2017).
Evolutionary potential is determined by genetic variation
in traits that contribute to the long-term persistence of spe-
cies in the face of climatic change; a species or population
with low evolutionary potential may be more vulnerable to
climate change. Although traits are the focus of selection

pressures arising from climate change, the term evolution-
ary potential is often used more generally when: (1) the
traits that are adaptive or are represented in a population
are unknown or (2) there is uncertainty regarding how the
environment may change and which traits are likely to
become adaptive.

Genetic diversity may represent a form of resilience
(e.g., Ehlers et al., 2008; Plaisted et al., 2020) that reflects
evolutionary potential, and, hence, conservation of
genetic diversity is increasingly recognized as an impor-
tant practice for ensuring biodiversity can adapt and per-
sist under current and future environmental conditions
(Milot et al., 2020). For instance, genetic diversity has
been a focus of international agreements on global biodi-
versity, such as the United Nations Convention on Bio-
logical Diversity's (CBD) Aichi Targets (Target 13) and
the Sustainable Development Goals (SDG 2.5; Hoban
et al., 2020). However, practitioners still rarely consider
evolutionary potential in conservation decision-making
(Cook & Sgrò, 2017) and, thus, estimates of genetic diver-
sity are rarely provided in National Reports to the CBD
(Hoban et al., 2021). This may be because application of
relevant research requires a bridge between the disci-
plines of conservation practice and evolutionary biology,
as well as translation of key evolutionary principles and
scientific evidence into decision-relevant insights (Cook
et al., 2021). Most management decisions utilizing
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evolutionary principles (e.g., captive breeding) have been
implemented in response to imminent threats, often as a
last resort for minimizing the risk of extinction
(Hellmann & Pfrender, 2011; Weeks et al., 2016). In con-
trast, efforts utilizing a forward-looking strategy, for
example to increase or facilitate evolutionary potential
(e.g., selection for species and genotypes with wide mois-
ture and temperature tolerances; Thurman et al., 2022)
are uncommon and are challenged by numerous con-
straints that have limited the development of appropriate
guidance for natural-resource managers (Cook
et al., 2021).

Limited application of evolutionary science may par-
tially reflect managers' lack of time and resources
(Cook & Sgrò, 2019). However, the lack of site-specific,
practical, and defensible strategies based on a diverse
body of research addressing different species, ecosystems,
and focal questions may play a much larger role. The lim-
ited evidence base to inform best-practice evolutionary
management of natural systems has led to uncertainty
about how to optimally facilitate (or infuse) thinking
about evolutionary processes into decision-making (Cook
et al., 2021). For example, in many instances, prioritizing
genetic uniqueness could increase the risk of extinction
(e.g., Weeks et al., 2016). However, uncertainty about the
evolutionary consequences of management decisions can
lead to paralysis and inaction (Cook & Sgrò, 2019). More-
over, a dearth of real-world examples to enable practi-
tioners to predict the outcomes of evolutionarily based
management practices is exacerbated by evolutionary
biologists' concerns that recommendations could be
taken out of context, ultimately resulting in a lack of
clear guidance for practitioners. Finally, it is important
that the information provided is aligned with agency
decisions being made, protocols, and timelines so that
actions can be planned and implemented more effectively
(Beier et al., 2017).

Here, we present the outcomes of a multiyear dialog
carried out among evolutionary and conservation biolo-
gists, molecular ecologists, and natural-resource practi-
tioners, wherein management-oriented participants were
asked to articulate general questions about how to man-
age for evolutionary potential (see Supporting
Information S1 and S2). We synthesized practitioners'
questions into three common themes: (1) recognizing
when action may be necessary because a species is either
unable to evolve or evolve at a rate that limits its ability
to persist in place; (2) understanding the feasibility of
assessing whether a population has high evolutionary
potential; and (3) identifying best management practices
for facilitating evolutionary potential, including implica-
tions for mixing populations. Although our primary focus

is on climate change, we acknowledge that innumerable
conservation challenges often complement climate-
change pressures and can sometimes be the dominant
ecological stressors that species or populations face (Díaz
et al., 2019). In the following sections, we outline key
knowledge needs of practitioners, the available evidence
that can address them, and remaining challenges to
incorporating information on evolutionary potential into
natural-resource management. Our intent is to inform
management of evolutionary potential across a range of
management targets, including populations, ecotypes,
and subspecies/species. We suggest that consistent dialog,
improved methods for knowledge exchange, and, ideally,
coproduction are required to support optimal consider-
ations of evolutionary potential that lead to better conser-
vation outcomes.

2 | RECOGNIZING WHEN TO ACT

In this section, we highlight focal questions related to
evolvability and how to recognize it. Specifically, we pro-
vide the available evidence in the context of species vul-
nerability, as a core component of management and
adaptation planning under climate change.

2.1 | Can evolutionary rates keep pace
with contemporary environmental
change?

The evidence regarding whether a species' rate of niche
evolution can keep pace with the rate of contemporary
environmental change is unclear (Merilä &
Hoffmann, 2016), but such rates assuredly vary among
species. Most research on this topic has been theoretical
or conducted using model systems, comparing evolution-
ary rates based on historical conditions to future climate-
or land use-change scenarios (Merilä & Hoffmann, 2016).
For example, Quintero and Wiens (2013) used climate
data along with phylogenies of tetrapod species to com-
pare estimates of past rates of niche evolution with the
projected rate of future climate change. Across 17 ani-
mal clades, rates of niche evolution in the paleorecord
were 10,000–100,000 times slower than the projected
pace of climate change from now through 2100
(Quintero & Wiens, 2013). Consequently, necessary
rates of climate-niche evolution have the potential to be
unprecedented under projected climate change, which
could lead to many extirpations (Hellmann & Pineda-
Krch, 2007; Merilä & Hoffmann, 2016; Quintero &
Wiens, 2013; Wiens, 2016).
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A weakness of theoretical studies includes the assump-
tion that historical rates of evolution were constant over
time. Instead, the pace of evolution could have varied,
causing models to under- or over-estimate historical rates
of change. Moreover, selection pressures may be much
greater under contemporary climate change, potentially
resulting in faster rates of evolution in at least some taxa.
There are some encouraging examples where species' evo-
lutionary responses have matched the velocity of contem-
porary climate change, including in fish (Kovach
et al., 2012), birds (Karell et al., 2011), plants (Franks
et al., 2014), and insects (Brakefield & de Jong, 2011).

2.2 | What are the characteristics of
species with greater evolutionary
potential?

Several key species attributes or ecological characteristics
(Table 1) can be used to determine when species are more
likely to evolve to accommodate changes in climatic
(or other environmental) conditions. The importance of
genetic diversity and gene flow for evolutionary potential is
well understood; higher levels of overall genetic diversity
increase the likelihood of population and species persis-
tence (Kardos et al., 2021; Ørsted et al., 2019; Weeks
et al., 2017; Willi et al., 2022). For example, a suite of indica-
tors for monitoring genetic diversity that are relevant for a
broad range of wild species have been proposed for post-
2020 CBD (Hoban et al., 2020). Moreover, genetic diversity,
differentiation, and inbreeding metrics, were proposed as
potential Essential Biodiversity Variables (EBVs) to be con-
sidered by the Group on Earth Observations Biodiversity
Observation Network (GEO BON; Hoban et al., 2022). The
utility of indicators of genetic diversity for understanding
evolutionary dynamics can be dependent on the type and
range of genetic markers evaluated, number and location of
populations sampled, and the appropriate method of analy-
sis (see section on when to use molecular tools, below).

Phenotypic variation is important because the pheno-
type (i.e., the outward expression of the genotype)
directly interacts with the environment and responds to
natural selection (Hendry et al., 2011). Consequently,
greater phenotypic variation can suggest a population is
already evolving. Outwardly visible phenotypic variation,
such as certain morphological (e.g., color, size) or behav-
ioral characteristics (e.g., phenology, habitat use), may be
more easily assessed than biochemical or physiological
traits. For example, phenological variation in the timing
of spring growth onset in alpine plants has been shown
to be tightly linked with snowmelt and air temperature
(as opposed to photoperiod) in the Swiss Alps (Vitasse
et al., 2017); these phenological shifts are often favored at

range edges (warm and cold) and can be associated with
tradeoffs, such as damage from increased exposure to
frost events (Willi & Van Buskirk, 2022). Furthermore,
snowshoe hares (Lepus americanus) in the Rocky Moun-
tains, which are white in the winter and brown in the
summer, are increasingly mismatched with their environ-
ments (i.e., white hares in brown, snowless backgrounds)
because of shorter winters associated with contemporary
climate change, making them more susceptible to preda-
tion (Mills et al., 2013). Hares that stay brown all winter
are found farther west in areas where prolonged snow
cover is uncommon, and researchers are exploring the
potential for adaptive capacity in coat color in regions
where the genotype–environment mismatch makes popu-
lations increasingly less fit (Jones et al., 2020).

Population size can be positively associated with
genetic diversity (Frankham, 1996; Willi et al., 2022) and
can be used as a proxy for evolutionary potential
(Thurman et al., 2020) if past population sizes are known.
For instance, past bottlenecks, recolonizations, and foun-
der events can reduce genetic diversity and evolutionary
potential (Frankham, 1996), even in larger populations.
Effective population size (Ne; the number of individuals
actively reproducing in a population) is directly related to
genetic diversity. Effective population size reflects popu-
lation history and a species' mating system or fecundity
and can be used to infer future genetic diversity (Hoban
et al., 2022). A rule of thumb that an Ne of 500–1000 indi-
viduals may be enough to maintain evolutionary poten-
tial is useful when estimates of Ne are available
(Frankham et al., 2014; Jamieson & Allendorf, 2012).
Alternatively, a target adult census size (Nc) of 5000 can
be an appropriate replacement, where Ne/Nc ratios are
assumed to be approximately 0.1 (Frankham, 2021).

Life-history characteristics, such as generation time, life
span, body size, and mating system, are often associated
with evolutionary potential, as well as the capacity to
respond to changes in different aspects of climate change
(e.g., decreasing snowpack, increasing aridity; Haaland &
Botero, 2019). In general, longer generation times, and,
thus, fewer opportunities for beneficial adaptations to arise,
are associated with species that have larger body sizes and
longer lifespans. Furthermore, species with more promis-
cuous or fecund life-history strategies will likely retain
greater levels of genetic variation than those with slower
reproductive rates (Thurman et al., 2020).

Variation in fitness components, such as survival,
reproduction, or mating success, could indicate genetic
variance in fitness and that a population has evolutionary
potential. This genetic variance can manifest as varying
vital rates (e.g., birth and death rates) wherein only a por-
tion of individuals in a population possess traits that can
tolerate changing environments and those that do not are
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lost to the process of natural selection. Generally, fitness
components (or vital rates) that are important contribu-
tors to population growth for a particular species will
have low variation in environments they are already
adapted to (i.e., the demographic buffering hypothesis;
Pfister, 1998). However, detecting this type of variance in
practice is challenging, as it requires that vital rates have
been consistently measured over time. Comparative stud-
ies of different populations that capture a snapshot in
time (i.e., space-for-time substitutions) may be less likely
to observe fractions of populations that failed to adapt

(presumably contributing to greater variation) and were
lost to the process of selection (Merilä, 2012).

Ecological characteristics may also be used to infer
evolutionary potential (Box 1). For instance, species with
broad geographic distributions (particularly those encom-
passing broad environmental variability) or ecological
niches are more likely to have higher genetic diversity and
adaptive capacity (Nicotra et al., 2015). An ability to use a
broad array of resources, both in space and time, can buffer
populations from unfavorable conditions. Conversely, spe-
cies with narrow distributions (e.g., endemics), or that use

BOX 1 Use of proxies to assess evolutionary potential of the rusty-patched bumble bee
(Bombus affinis)

Historically, the rusty-patched bumble bee (Bombus affinis) was broadly distributed across prairies and grass-
land habitats in the eastern and upper-Midwest portions of Canada and the USA (USFWS, 2016). The species
experienced a widespread and steep decline in the early 2000s, precipitating its endangered status in 2010 in
Canada (per COSEWIC) and in 2017 in the United States (per the Endangered Species Act of 1973). Today, the
species is extant in 11 states (USFWS: Rusty-Patched Bumble Bee Map, accessed October 2021) and 1 Canadian
Province (ECCC, 2016), a >50% reduction in its native range. The exact cause of the decline is unknown, but
evidence suggests a synergistic interaction between an introduced pathogen and exposure to pesticides
(USFWS, 2016). The remaining populations are exposed to a myriad of interacting stressors, including other
pathogens, pesticides, habitat loss and degradation, nonnative and managed bees, the effects of climate change,
and small-population dynamics (USFWS, 2016).

As part of a Species Status Assessment leading up to its U.S. listing under the Endangered Species Act,
USFWS scientists wanted to assess changes in the species' adaptive diversity but limited genetic data were avail-
able. Therefore, ecoregions were used to delineate unique areas of adaptive diversity across the species' range,
as the boundaries of these ecoregions are differentiated based on precipitation levels and temperature (impor-
tant determinants of B. affinis survival and reproductive success). Using past, current, and future projections of
B. affinis occurrences, change in adaptive diversity over time was estimated. Key assumptions in the assessment
were that the ecoregions accurately captured the full spectrum of B. affinis adaptive diversity and that an
ecoregion-wide extirpation would signify a loss in adaptive diversity. This work allowed scientists to incorporate
the species' evolutionary potential in their assessment of the species' current and future viability. Building off
this work, the U.S. recovery plan refined the ecoregion units and specified restoring and maintaining popula-
tions in each unit as a recovery criterion, with the intent of preserving the species' adaptive diversity and
thereby maintaining the species' ability to adapt to changing environmental conditions (USFWS, 2021).
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a limited range of resources (i.e., ecological specialists),
likely have limited capacity to cope with changing environ-
ments or variable disturbance regimes (Li et al., 2014). A
potential caveat associated with this generality is when a
species comprises multiple disjunct and isolated popula-
tions despite a large geographic distribution; genetic diver-
sity can erode through genetic drift similarly to a species
with a small geographic-range size. Loss of geographic
range extent may also be used as a comparative tool to
assess evolutionary potential among many species (e.g., see
Box 1 of Mimura et al., 2017); such analytical approaches
can provide insights regarding which species may be most
in need of management attention.

Location within the range can also be a relevant indica-
tor of adaptive potential. The Abundant-Centre Hypothesis
posits that species' abundance and performance decrease
toward the range periphery (e.g., northern or southern lati-
tudinal extent) due to a deterioration of climatic conditions
relative to the species' niche, and that peripheral popula-
tions can have lower genetic diversity and Ne, and higher
genetic differentiation due to population isolation (Eckert
et al., 2008). However, species' distributions within ranges,
and degree of climate-change exposure are often complex
and vary in response to topographic patterns and other fac-
tors that influence microclimates, and scale of measure-
ment (Billman et al., 2021). Some species have healthy
peripheral populations yet have core populations that are
less healthy because of factors like poor quality habitat
(Brown, 1984) that can occur in any portion of the range.
Furthermore, local adaptations of peripheral populations
may inhibit adjustment to new environments, as has been
shown in butterflies (O'Neil et al., 2014; Pelini et al., 2009).
Supporting natural or historical patterns of connectivity
and gene flow across a species' range can increase adaptive
potential in response to environmental change.

3 | FEASIBILITY OF MEASURING
EVOLUTIONARY POTENTIAL

Measuring evolutionary potential can be extremely valu-
able for informing management under climate change
but can be difficult to quantify, particularly because mul-
tiple mechanisms can be responsible for observed pheno-
typic changes. In particular, phenotypic plasticity and
epigenetic changes can be challenging to distinguish
from evolutionary (genetic) adaptation in the absence of
common garden experiments (Hoffmann, Weeks, &
Sgrò, 2021; McGuigan et al., 2021) because they can all
result in phenotypic changes in response to environmental
triggers or stressors. At the same time, phenotypic plasticity
can also be considered a trait in itself that has the potential
to evolve. It can be an important mechanism for

responding to climate change (Beever et al., 2017), particu-
larly for long-lived species (e.g., Cooper et al., 2019).

Molecular tools can provide valuable insights into
species' evolutionary, plastic, or epigenetic changes
(McGuigan et al., 2021). Several types of experimentation
can also be used to infer evolutionary potential when
there is prior knowledge of the population of interest
(e.g., pedigree data) or ability to control for key environ-
mental factors (Merilä & Hendry, 2014). However, in the
absence of the data required to assess and distinguish
these evolutionary processes, proxies like population size
or demographic history, are often used as indirect mea-
sures when their caveats are well understood. The follow-
ing sections describe the strengths and weaknesses of
using each of these approaches.

3.1 | When can molecular tools be
helpful?

Molecular tools for assessing genetic variability and
change are useful when precise estimates of genetic
diversity are needed to inform targeted management
strategies. Although their broad-scale use is likely to be
limited due to cost, these costs are rapidly decreasing,
and the tools can be applied to many types of questions.
Examples of use include determining inbreeding rates
when inbreeding depression is suspected (e.g., Townsend
et al., 2009), assessing effectiveness of genetic restoration
efforts (e.g., Weeks et al., 2017), identifying genetic ero-
sion (e.g., Thompson et al., 2019), detecting hybridization
(e.g., Garroway et al., 2010), identifying local adaptations
(e.g., Pel�aez et al., 2020), monitoring of genetic diversity
(e.g., Hollingsworth et al., 2020), assessing carnivore popula-
tion size to avoid wildlife-related conflicts (e.g., Åkesson
et al., 2022), evaluating ecosystem resilience (e.g., Wernberg
et al., 2018), or acquiring baseline information about genetic
diversity for conservation-planning purposes (e.g., Lorenzana
et al., 2020). Moreover, molecular tools can be combined
with spatial data to identify factors that are governing genetic
structure and connectivity (i.e., landscape genetics) and help
practitioners identify which populations are most critical to
maintaining or restoring gene flow across a network or meta-
population (Castillo et al., 2016), although care must be
taken to ensure appropriate sampling and analyses
(Hoffmann, Miller, & Weeks, 2021). Finally, experimental
association studies can be used to identify associations
between certain regulating genes and traits. Regulating genes
can be “turned on” (i.e., expressed) under certain environ-
mental conditions and affect traits like leaf area and plant
height, as has been shown in populations of the common
sugarbush (Protea repens) in response to experimental
drought in South Africa (Akman et al., 2021).
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The choice of genetic markers used for estimating
genetic diversity depends largely on the management
question (Table 2). Mitochondrial DNA is useful for
exploring biogeographic and phylogenetic questions
because its maternal mode of inheritance and lack of
recombination provides insights on parentage (Hartl &
Clark, 1997). Consequently, the marker is often used for
distinguishing among evolutionary lineages, resolving tax-
onomies, or identifying interspecific hybridization (see
section below on when to mix populations). Many mea-
sures of genetic diversity use nuclear DNA, which can
evolve rapidly in some regions of the genome and is able
to capture more recent responses to land-use or environ-
mental change (e.g., Thompson et al., 2019). These genetic
diversity estimates fall into two general categories: those
based on genes that affect fitness or are under selection
(i.e., adaptive diversity) and those that are unlikely to
affect fitness or are not selected upon (i.e., neutral

diversity; Holderegger et al., 2006; Hoffmann et al., 2015).
Nuclear DNA markers like microsatellites can be useful to
inform questions, such as the level of inbreeding or
hybridization (Table 2). Questions related to local adapta-
tion can be assessed using nuclear genetic markers found
across both neutral and adaptive portions of the genome,
such as single nucleotide polymorphisms (SNPs). SNPs
have become the marker of choice because they are easier
to collect than microsatellites, and the mutational process
that generates them can be more easily captured in statisti-
cal models used to distinguish between evolutionary pro-
cesses. This means that SNPs can be used to make
inferences about gene flow, drift, demography, and phy-
logeny, in addition to testing for signals of selection and
adaptation along environmental gradients. Given that
thousands of SNPs are typically scored, they provide more
precise estimates of population processes such as migra-
tion than other markers, especially when rates of gene
flow are low (Hoffmann et al., 2015).

If the aim is to link genomic variation to functional
variation (i.e., an understanding of the function for each
gene; Hendry et al., 2011; Hoffmann et al., 2015; Hoff-
mann, Weeks, & Sgrò, 2021) to fully assess how a particu-
lar change in allele frequencies may affect evolutionary
potential (Box 2), an annotated reference genome (i.e., a
nucleic acid sequence assembled into a representative set
of genes for a particular organism of a species) is needed.
A reference genome of a closely related species can be used
when one for the target species is either not available or
has gaps (e.g., use of a domestic sheep [Ovis aries] refer-
ence genome for bighorn sheep [Ovis canadensis] assess-
ments of evolutionary potential; Buchalski et al., 2018) but
slight differences can confound results.

Although molecular approaches are increasingly accessi-
ble through access to commercial sequencing platforms,
high-level skills in bioinformatics are needed to ensure the
quality of the data being used. Specialist training and collabo-
ration with molecular ecologists can help to support the
appropriate choice of statistical models used in analyses
(Hoffmann, Weeks, & Sgrò, 2021). Methodological and ana-
lytical limitations of using SNPs to infer selection and local
adaptation must be carefully considered (Hoffmann
et al., 2015; Hoffmann, Weeks, & Sgrò, 2021). In particular,
inferences about selection and adaptation from genomic
studies of SNP data along environmental gradients must
account for the high rate of false positives resulting in mis-
leading conclusions about adaptation. A thorough under-
standing of evolutionary processes is necessary to ensure that
data are analyzed, and results interpreted appropriately.
Although considerable work is being carried out to make
genomic data available in a format useful for decision mak-
ing (e.g., Threatened Species Initiative; Hogg et al., 2022), we
still see genuine collaborations (wherein stakeholders are

TABLE 2 Examples of the types of evolutionary questions that

can be answered using metrics of adaptive vs. neutral genetic

diversity

Evolutionary topics/questions

Neutral
genetic
diversity

Adaptive
genetic
diversity

Questions relating to the need for management action

What is the level of genetic
diversity in a population?

X

Is inbreeding occurring? X

Is inbreeding depression
occurring?a

X

Is genetic drift occurring? X

Is hybridization occurring? X

How has the population size
changed historically?

X

Questions to support the design of potential management actions

Is there genetic differentiation
among populations?

X

Is there evidence for genetic
variation along environmental
gradients?

X X

Is there evidence of past adaptive
introgression into a population?

X

Questions relating to the success of management action

Was genetic diversity in the
population increased?

X

Was evolutionary potential
increased?

X

How much dispersal is occurring
within and across populations?

X

aRequires measures of fitness or fitness components to fully assess.
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involved at an early stage) between practitioners and evolu-
tionary biologists as essential.

Despite these challenges, molecular tools are increas-
ingly being used to estimate genetic diversity in

conservation assessments, and molecular ecologists and
evolutionary biologists are often sought after for assis-
tance with answering management-relevant questions.
Stronger partnerships (i.e., genuine collaborations)

BOX 2 Use of molecular tools for exploring evolutionary potential of gray box (Eucalyptus
microcarpa)

The gray box (Eucalyptus microcarpa) is native to southeastern Australia. The once-widespread Grey Box
Grassy Woodland community has been extensively cleared and is now a nationally threatened ecological com-
munity (DSEWPC, 2012). This vegetation community is home to numerous plants, birds, insects, and mam-
mals, but only 10%–15% of the historical range remains. Extensive clearing for agriculture has left a legacy of
small fragments of gray-box woodland scattered across its previous distribution, prompting widespread use of
this species in restoration projects.

Recent work sought to inform restoration efforts by exploring the evolutionary potential of gray box under
projected climate change. Researchers from the University of Melbourne and CSIRO collected DNA from 20–30
individual trees across 26 remnant populations spanning temperature and precipitation gradients across New
South Wales and Victoria (Jordan et al., 2017). Greater than 4200 SNPs were identified, and 81 of those were
found to potentially be under selection from climatic variables, including measures of temperature, aridity, and
precipitation. The authors used an annotated reference genome for a closely related species used in forestry
(E. grandis) to infer the function of a small portion of putatively adaptive SNPs potentially related to growth,
development, and stress responses, all processes likely to be affected by climate. However, these adaptive genes
occurred randomly across chromosomes, suggesting that each has a small effect on local adaptations (i.e., the
phenotype is determined polygenically).

This work is consistent with many other genomic investigations, in that adaptive traits are often controlled by
many genes (each with small effect), but that there can be much standing genetic diversity to work with across the
distribution of some wild populations. However, given the large number of genes under selection, it may be difficult
to determine whether their optimal frequencies can keep pace with projected climate change, especially if popula-
tions are fragmented. Consequently, management of northern gray box populations, particularly in locations where
current climate conditions are closer to those expected under climate change, may offer the potential to use climate-
adjusted provenancing strategies to support restoration of southern populations (Prober et al., 2015).
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between researchers and practitioners will strengthen the
decision-relevance of molecular work, and help practi-
tioners gain critical experience in investigating and
applying information on evolutionary potential. As man-
agement agencies hire molecular expertise as part of their
organization (e.g., U.S. Fish and Wildlife Service, Branch
of Species Status Assessment Science Support; California
Department of Fish and Wildlife, USA) to accommodate
the growing interest in, and applications of, genetic infor-
mation, and costs continue to decline, we expect practical
examples and guidance on highest-priority applications
to increase. On-going collaborations with evolutionary
biologists will be pivotal to the success of such endeavors.
However, costs will likely still be prohibitive for some
agencies or there may be existing decision deadlines that
cannot wait for better information to become available,
so continued work to understand when microsatellites,
which can sometimes be cheaper or more widely used
than SNPs, provide sufficient information will be helpful
to support effective decision-making.

3.2 | What other approaches can be used
to determine evolutionary potential?

Common-garden, animal-model, or experimental-
evolution investigations can indicate whether a species
may be able to adapt to climate change. For example,
Frank et al. (2017) used a common garden approach to
measure fitness of European trees under projected cli-
mate change; whereas European beech (Fagus sylvatica)
and Norway spruce (Picea abies) were found to be poten-
tially maladapted to future conditions based on a suite of
measured growth and phenological traits, silver fir (Abies
alba) may be less vulnerable to changes (Frank
et al., 2017). Advantages of using experimental studies
include potentially being able to differentiate between
alternative causes of phenotypic change. Teplitsky et al.
(2008) used an animal-model study to determine whether
body size of red-billed gulls (Chroicocephalus scopulinus)
decreases with increasing temperatures, as would be
expected under Bergmann's Rule (Bergmann, 1847). The
authors found that, although body size did decrease, it
was most likely due to phenotypic plasticity rather than
evolutionary change (Teplitsky et al., 2008).

In practice, carrying out such experimental studies on
natural populations can be problematic because they some-
times require large amounts of preexisting data, the ability
to control for certain environmental factors, or are limited
to species with specific life history traits. For example,
experimental-evolution investigations are generally best
carried out on species with short generation times to allow
for observations of evolutionary responses to controlled

environmental conditions. Additionally, animal model
studies require pedigree data, which are not available for
most natural populations. Despite some of these chal-
lenges, experimental studies can be a powerful approach
for understanding evolutionary potential when time, data,
and expertise are available. Merilä and Hendry (2014) pro-
vide an overview of multiple approaches that can be used
for determining genetic and plastic changes, as well as their
advantages and disadvantages.

3.3 | When is it appropriate to use
proxies and rules of thumb?

Proxies or rules of thumb can be used for assessing evolu-
tionary potential if potential caveats are accounted for
(Table 1). For example, inferring evolutionary potential
from a life-history trait like reproductive strategy may be
misleading and inappropriate if the population of interest
recently experienced a bottleneck, causing genetic diver-
sity to be much lower than what would be expected for
species with high reproductive output. Otherwise, the
decision to use proxies or rules of thumb largely reflects
the management realities of needing a feasible, timely,
low-cost approach. Collecting new data to inform evolu-
tionary assessments may not be feasible, and practi-
tioners may already be collecting or have access to data
that can indirectly inform assessment of evolutionary
potential (e.g., species distribution models that consider
the potential for intraspecific variation; Hällfors
et al., 2016; Smith et al., 2019). Furthermore, use of eco-
logical proxies (e.g., habitat connectivity) may be more
feasible for situations where species (or multiple species)
occur in remote areas or across large scales (that span
more than one jurisdiction) and are difficult to sample.
However, in some cases, collection of proxy data may be
no less expensive than molecular studies. For example,
large-mammal management often uses DNA collected
from noninvasive genetic sampling to generate a database
of unique individuals (via genetic tags) that are used to
estimate population size using open- and closed-
population models in software like MARK (White &
Burnham, 1999). These same databases of individual
genotypes could also be used to estimate genetic diver-
sity. Because costs of DNA analysis have dropped consid-
erably in recent decades, practitioners may find “genetic
tagging” more cost-effective than capture and handling
methods (Lamb et al., 2019).

The choice of proxies or whether to use proxies in
place of molecular methods can also depend on the level
of risk. For example, more may be at stake when making
management decisions for protected species or those of
high conservation concern. Certain proxies have a greater
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amount of research connecting them with genetic diver-
sity (e.g., Ne; Jamieson & Allendorf, 2012) and may be
considered more reliable. Hoban et al. (2020) reviewed
the strengths and weaknesses of a list of potential genetic
indicators released by the CBD. Three indicators were
identified as being S.M.A.R.T. (i.e., Specific, Measurable,
Achievable, Relevant, and Time-bound), including effec-
tive population size (Ne), the number of remaining popu-
lations, and the number of species or populations already
being monitored using DNA-based methods (Hoban
et al., 2021). Although proxies may be an obvious choice
in many situations, practitioners may prefer a more direct
measure of evolutionary potential, especially if they have
access to available expertise and resources needed to cal-
culate measures of genetic diversity.

4 | BEST MANAGEMENT
PRACTICES FOR FACILITATING
EVOLUTIONARY POTENTIAL

Diverse management strategies have been used to help spe-
cies better cope with the effects of climate change (LeDee
et al., 2021), and many others have been proposed
(Thurman et al., 2022). As natural-resource practitioners
become increasingly accustomed to identifying and imple-
menting these management strategies, concerns have
increased regarding best practices for promoting evolution-
ary potential or favorable traits. Determining where in a spe-
cies' range management should focus, when to implement
high-risk actions, and the potential for unintended conse-
quences were topics of particular concern that were voiced.

4.1 | Where in a species' range should
management focus?

In the absence of information regarding potential local
adaptations and beneficial traits, being strategic about
where to focus management of evolutionary potential may
increase the likelihood of success, despite limited resources.
Most extirpations have occurred at the trailing edge of a
species' range (Freeman et al., 2018), and establishment of
new populations along the leading edge has not kept pace
for many populations (Wiens, 2016). Actions targeted at
trailing-edge populations when they can be identified can
include efforts such as genetic restoration and rescue (Bell
et al., 2019). These reactive efforts are intended to increase
genetic diversity in inbred populations and minimize loss
of fitness associated with inbreeding. However, reintroduc-
tions of climate-sensitive species to locations where past
extirpations have occurred because of deterministic
changes in climate (i.e., where climate may no longer be

suitable or will become unsuitable soon) may be less suc-
cessful than reintroductions to locations that have experi-
enced nonclimatic catastrophes (e.g., see Box 1 of Beever
et al., 2016). Leading-edge populations are frequently the
target of more-novel actions (Thurman et al., 2022), such
as receiving nonlocal provenances (e.g., genotypes, seeds,
individuals) to facilitate adaptation by endowing the recipi-
ent population with potentially adaptive alleles or gene var-
iants. Leading-edge actions are considered more proactive
because they anticipate potential changes to distributions
and fitness associated with novel conditions.

Evolutionary potential can also be explicitly managed
when restoring disturbed or degraded landscapes. Specifi-
cally, seed material for restoration can be selected to maxi-
mize genetic diversity (Byrne et al., 2011; Sgrò et al., 2011).
In particular, local-provenance seed can be mixed with some
proportion of seed from genetically diverse populations that
inhabit climatically diverse regions (Prober et al., 2015). This
can preemptively increase adaptive capacity and evolution-
ary potential under future climatic conditions.

Ensuring connectivity across environmental gradients is
important for supporting large populations, allowing for
migration, and maximizing opportunities for unassisted
evolutionary adaptation to a broader array of potential
future conditions by, for example, capturing evolutionary
hotspots within a species' range (Sgrò et al., 2011; Weeks
et al., 2011). This, in turn, allows for the persistence of
locally adapted populations, adaptive genetic diversity, and
evolutionary potential. Efforts to ensure a gradient of envi-
ronmental conditions are protected can also maximize
opportunities for persistence at the species level, particularly
if future conditions (or species response to future condi-
tions) are uncertain (Anderson & Ferree, 2010). Building on
this idea, The Nature Conservancy's “Resilient and Con-
nected Network” emphasizes protection of terrestrial sites
that have higher-than-average topographic complexity for a
given geology or soil type, with the idea that these examples
capture the widest possible variety of microsite conditions,
which is used as a proxy for higher species and genetic
diversity (Anderson et al., 2014; https://maps.tnc.org/
resilientland/). Management of gradients across landscapes
has been applied to protected-area planning, with most
recent work emphasizing the intention of facilitating spe-
cies' future range shifts (Littlefield et al., 2017).

4.2 | Can well-intended management
actions do harm? What are no-regrets
practices that usually support evolutionary
potential?

There are many examples of management actions that have
led to unintended negative consequences. Although most
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actions used to promote evolutionary potential can involve
risk, some may be riskier than others (e.g., hybridization).
A well-known example of negative consequences is the
introduction of ibex populations from Turkey (Capra hircus
aegagrus) and the Sinai Peninsula (Capra nubiana) to a
population in the Tatra Mountains in Slovakia (Capra ibex),
which produced hybrids that bred too early and caused the
entire population to collapse (Templeton, 1986). However,
many decision frameworks are now available that can help
practitioners avoid such catastrophes. For example, Frank-
ham et al. (2011) provided a decision tree for determining
the probability of outbreeding depression when mixing two
populations. The authors suggested that risk is increased
when two populations exhibit at least one of the following
criteria: (1) fixed chromosomal differences (which can be
determined using molecular tools), (2) are distinct species,
or (3) have been separated for at least 500 years, or occupy
different environments (e.g., alpine vs. low elevation) for
>20 generations (Frankham et al., 2011). Thus, even with-
out molecular tools, a practitioner would likely choose
against mixing those populations today, given that C. h.
aegagrus and C. nubiana are now considered to be different
species and they occupied warm, arid environments and
had been separated from C. ibex (which occupied cool,
high-elevation environments) for hundreds of years. Some-
times actions could be wasteful, for example, if attempts to
increase genetic diversity result in genotypes that are not
favored in the new environment; this scenario may be par-
ticularly problematic in cases where a species is declining
and source populations are hard to come by (e.g., see Box
1 of Beever et al., 2016).

The link between genetic variation, evolutionary
potential, and population size makes maintaining rela-
tively large and well-connected populations critically
important for long-term viability for most species
(Forester et al., 2022). Even where large populations do
not exist, maintaining connectivity to facilitate gene flow
will support evolutionary potential and genetic diversity
across populations (Sgrò et al., 2011). Exceptions include
the potential for enabling disease transmission and epi-
demic risk (Hess, 1996). Furthermore, increasing connec-
tivity to areas where local adaptations may be important,
such as areas mentioned above (climate refugia at the
trailing edge of the geographic range, leading edge of the
range, environmental gradients), has the potential to
facilitate movement of maladapted individuals to those
regions (i.e., gene swamping; Lenormand, 2002). A care-
ful approach is to consider population size and genetic
distinctiveness. In small populations, genetic drift can
overpower selection and it may be better to supplement
them demographically if populations have not been sepa-
rated for more than 500 years (Ralls et al., 2018) and are
from large and genetically diverse populations (Ralls

et al., 2020). Furthermore, understanding patterns of rare
alleles (e.g., genes that are low in overall frequency) and
facilitating their presence through improving habitats
may preserve potential adaptations. Finally, recent
research has sought to identify regions where manage-
ment actions may be most useful, with the goal to reduce
wasteful actions. For example, Gougherty et al. (2021)
showed that genetic rescue via migration of balsam pop-
lar (Populus balsamifera) may be least successful along
the longitudinal edges of its range because of potential
maladaptation to future climate scenarios.

4.3 | When can population mixing be
considered?

Intraspecific mixing of populations may be appropriate
when populations are small, isolated, and potentially
inbred (i.e., genetic rescue; Hoffmann, Miller, &
Weeks, 2021) or when populations are stressed because
of environmental change (i.e., evolutionary rescue; Hoff-
mann, Miller, & Weeks, 2021). Furthermore, when fit-
ness to new environments is known, introducing
individuals (or their genotypes) to areas where they may
be preadapted to current or future conditions
(i.e., climate-adjusted provenancing; Prober et al., 2015)
is an increasingly common consideration for long-lived
species, especially some plants (Hoffmann, Miller, &
Weeks, 2021). Recent work has also demonstrated that
mixing can have many benefits for evolutionary potential
(Zecherle et al., 2021). The use of risk-assessment frame-
works is an important consideration to reduce the poten-
tial for harm (Table 3). Actively weighing the risks of
inbreeding depression versus outbreeding depression can
achieve better outcomes (Liddell et al., 2021).

Although mixing populations can improve evolution-
ary potential within a species, mixing different species
(i.e., interspecific hybridization) can increase the risk of
outbreeding depression (the reduction in any pre- or
postmating aspect of reproductive fitness because of
attempted crossing of distinct lines/populations, subspe-
cies or even species, Frankham et al., 2011) and should,
therefore, be used cautiously. A potential caveat associ-
ated with mixing populations arises when species bound-
aries are unknown. Consequently, it is important that
evolutionary lineages have been clearly established
before evaluating potential risks. Intentional hybridiza-
tion can be a consideration for rapid evolution, particu-
larly when the alternative is a high risk of extinction
(Hamilton & Miller, 2016), but hybrid offspring are best
evaluated in captivity or controlled experiments to assess
fitness to different environments (Weeks et al., 2011;
Weeks et al., 2017).
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As climate change forces many species to shift in
space to track suitable conditions, unintentional hybridi-
zation may increase with the reorganization of ecological
communities and movement of “climate refugees” across
the landscape (Urban, 2020). For example, climate-driven
hybridization has been documented between northern
and southern flying squirrels (Glaucomys sabrinus and
G. volans, respectively; Garroway et al., 2010), polar and
brown bears (Ursus maritimus and U. arctos, respectively;
Pongracz et al., 2017), Canada lynx (Lynx canadensis)
and bobcat (Lynx rufus; Schwartz et al., 2004), and blue-
and golden-winged warblers (Vermivora cyanoptera and
V. chrysoptera, respectively; Environment and Climate
Change Canada, 2016). It is not yet known what percent-
age of these hybrids has altered fitness under climate
change, but interspecific hybridization can lead to nonvi-
able or infertile offspring. For example, research on
hybrids of introduced rainbow trout (Oncorhynchus
mykiss) and native westslope cutthroat trout (Oncor-
hynchus clarkii lewisi) showed reduced reproductive suc-
cess when only a small proportion of ancestry was mixed
(Muhlfeld et al., 2009). Proactive assessment of range
shifts and potential species interactions may be necessary
for detecting hybrids, as well as monitoring to evaluate
fitness of hybrid offspring and their location (e.g., Ryan
et al., 2018). Managers will then have a choice of three

strategies that seek to persecute shifting species and/or
hybrid offspring, protect the native species, or ignore this
redistribution of biodiversity (Scheffers & Pecl, 2019).

5 | A PATH FORWARD

Our dialog between conservation practitioners and evolu-
tionary biologists has identified several needs related to
research, science translation, and application that can
inform future natural-resources management under cli-
mate change. These include:

• Filling scientific knowledge gaps: Although many
advances have occurred for understanding species' evo-
lutionary responses to environmental change, predict-
ing evolutionary potential remains a challenge because
long-term data sets across a range of geographic distri-
butions and ecological systems are often required. Fur-
thermore, determining whether evolution will be able
to keep pace with the rate of environmental change is
currently unknown for many species. Additional
molecular and experimental approaches for modeling
wild, nonmodel species are needed to increase under-
standing of: (1) factors that may facilitate or constrain
adaptations, and (2) effectiveness of management

TABLE 3 Examples of existing frameworks and decision-support tools to inform best practices for managing evolutionary potential

Management
scenario Source Context/decision points described

Provenancing Breed et al. (2013) Decision tree for seed selection with considerations of climate-change
distribution modeling and genetic/environmental differences among
populations

Harrison et al. (2017) A framework for identifying candidate seed sources for restoration
(Provenancing Using Climate Analogues or PUCA)

Byrne et al. (2011)a A framework for reducing risk associated with revegetation in degraded
landscapes

Prober et al. (2015)a Climate-adjusted provenancing: a strategy for climate-resilient ecological
restoration

Mixing of
populations

Frankham et al. (2011)a A framework for assessing risk of outbreeding depression

Weeks et al. (2011)a and
Karasov-Olson et al. (2021)a

A framework for assessing risk of translocating individuals vs. not acting

Ralls et al. (2018)a Guidance on restoring gene flow to small, inbred populations

Hoffmann et al. (2021)a A framework for making management decisions around the implementation of
genetic mixing

Choosing best
management
strategy

Ottewell et al. (2016)a A framework for choosing a management strategy based on genetic
differentiation and diversity and inbreeding

Thompson et al. (2021) A framework for understanding when to Resist, Accept, or Direct changes to
ecosystems, including disruption of evolutionary processes

aIndicates open-source publication.
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interventions. Research related to “pre-adapted” indi-
viduals that may be able to persist under certain cli-
mate conditions, which are known either because of
trait expression or the ability to survive in certain envi-
ronments, is critical for decision making. Given the
large number of species that may be affected by cli-
mate change, research on generalizing evolutionary
potential across congeners with similar biological attri-
butes or that exist in similar environments would be
useful for informing natural resource management.

• Building a decision-relevant evidence base: Case studies
are useful for providing evidence of successful and
unsuccessful management actions, but their outcomes
are often case-specific and lack generalizations;
researchers now recognize that a more-comprehensive
evidence base of forward-looking (proactive) versus
reactive actions under a wide range of contexts can
better demonstrate effectiveness of management in
natural populations and increase confidence in
decision-making (i.e., Cook et al., 2021). Building the
capacity for managers to apply insights from evolution-
ary biology may require investment in science transla-
tion and coproduction, processes which facilitate the
development of decision-relevant science, and mutual
learning across the research and practitioner commu-
nities (Enquist et al., 2017; Hällfors et al., 2016).

• Assessing evolutionary potential: Proxies or rules of
thumb can indicate evolutionary potential, in place of
molecular tools, as long as the caveats are well under-
stood. Working directly with researchers and boundary
actors and/or utilizing expert-elicitation methods
(e.g., Camac et al., 2021) may help practitioners gain a
better understanding of current and future threats and
potential evolutionary responses of species of interest.

• Using decision frameworks: Decision frameworks have
been developed to increase understanding of the
potential risks and benefits associated with mixing of
populations. The risk of outbreeding depression, for
example, occurs along a continuum that increases sub-
stantially when mixing evolutionarily distant popula-
tions or species (hybridization; Frankham et al., 2011;
Weeks et al., 2011; Hoffmann, Miller, & Weeks, 2021),
and using decision frameworks may minimize con-
cerns for many management situations. At the same
time, researchers recognize that risks of mixing need
to be weighed more explicitly in conservation studies
and to make clear recommendations that can directly
inform decision-making (Liddell et al., 2021).
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