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Abstract

The mosquito Aedes aegyptiis the primary vector of many disease-causing viruses, includ-
ing dengue (DENYV), Zika, chikungunya, and yellow fever. As consequences of climate
change, we expect an increase in both global mean temperatures and extreme climatic
events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to tem-
peratures beyond their upper thermal limits. Here, we examine how DENV infection alters
Ae. aegyptithermotolerance by using a high-throughput physiological ‘knockdown’ assay
modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have pre-
viously been shown to accurately predict an insect’s distribution in the field. We show that
DENV infection increases thermal sensitivity, an effect that may ultimately limit the geo-
graphic range of the virus. We also show that the endosymbiotic bacterium Wolbachia
pipientis, which is currently being released globally as a biological control agent, has a simi-
lar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state, Wolba-
chia did not provide protection against DENV-associated effects on thermal tolerance, nor
were the effects of the two infections additive. The latter suggests that the microbes may act
by similar means, potentially through activation of shared immune pathways or energetic
tradeoffs. Models predicting future ranges of both virus transmission and Wolbachia’s effi-
cacy following field release may wish to consider the effects these microbes have on host
survival.

Author summary

Changes in global climate, which include higher temperatures and more frequent extreme
temperature events, are expected to cause dramatic shifts in the distributions of infectious
diseases. The geographic range of the mosquito Aedes aegypti continues to expand, risking
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greater incidence of viral diseases including dengue (DENV), Zika, chikungunya, and yel-
low fever. One emerging solution to control these viruses is the release of the insect bacte-
rium Wolbachia, whose infection in mosquitoes reduces virus transmission to humans.
However, the effects of rising temperatures on the efficacy of this tool are unclear. Here,
we studied whether DENV and Wolbachia can alter the thermal sensitivity of the mos-
quito Ae. aegypti by using a heat-based physiological assay. We demonstrate that, sepa-
rately, DENV and Wolbachia infections increase mosquito thermal sensitivity, causing
more rapid death when mosquitoes are exposed to extreme heat. The impacts of the
microbes on mosquito thermal sensitivity were similar but not additive, suggesting they
effect the mosquito in similar ways. Our work demonstrates that future global projections
of DENV transmission risk and of Wolbachia’s potential efficacy may need to consider
the impact of these microbes on vector survival.

Introduction

Mosquitoes are responsible for transmitting a diverse array of human disease-causing viruses
such as Zika (ZIKV), chikungunya (CHIKV), West Nile, yellow fever, and dengue (DENV) [1,
2]. The most prevalent of these viruses is DENV. Transmitted by the mosquito Aedes aegypti,
DENV is responsible for an estimated 390 million cases of dengue fever globally each year [3,
4]. While usually associated with a self-limiting febrile illness, DENV can also cause severe dis-
ease that may result in death [4-6]. Without effective antiviral drugs or a vaccine for DENV,
ZIKV, or CHIKYV, vector control has remained the primary strategy for reducing the incidence
of these human diseases [7, 8]. Traditionally, such strategies have relied on insecticide use and
larval habitat reduction. A more recent and promising approach involves the use of the insect
endosymbiotic bacterium Wolbachia pipientis [9]. This self-spreading, vertically inherited bac-
terium has been transinfected into Ae. aegypti, where it is being released globally into wild
populations for biological control (biocontrol) because Wolbachia limits the replication of
viruses inside the mosquito, including DENV [10, 11].

Ae. aegypti is a highly anthropophilic species, restricted to regions with human settlements,
where it breeds in human-made containers inside and near housing. The increasing incidence
of dengue fever globally is in part due to the ever-expanding geographic range of the vector [5,
12]. Aided by increasing urbanization and climate change, 50% of the world’s population is
expected to live in association with Ae. aegypti by 2050 [13]. Changes in global temperature
will shift the map of dengue fever in the following two ways: by increasing risk in previously
temperate areas and reducing risk in some regions that exceed mosquito thermal optima [14-
16]. The operative temperature range for Ae. aegypti is between 15.0 and 35.0°C [15], and tem-
peratures outside this range can cause reductions in survival and reproduction and can impact
developmental time between stages (i.e., eggs, larva, pupae) [17]. Because the mosquito body
temperature is entirely dependent on their environment, they are highly susceptible to various
aspects of thermal stress [16]. Thermal stress can be triggered in response to rising average
temperatures, as well as extreme climatic events such as heat spikes [18] that are expected to
result from greater climate variability.

The individual thermal optima of DENV and Wolbachia will also affect global distributions
of disease. Warmer ambient temperatures have been associated with increased viral replication
in mosquitoes and, consequently, a shorter extrinsic incubation period [19-21]. This parame-
ter represents the time window between when a mosquito first takes an infectious blood meal
and when it can transmit virus to a human via a subsequent bite, with a shorter extrinsic
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incubation period leading to greater transmission rates [22]. Laboratory studies that have
reared mosquitoes under different diurnal temperature ranges, which more closely match nat-
ural conditions, have also demonstrated changes in Ae. aegypti susceptibility to DENV [23]. At
the molecular level, higher temperatures in mosquito cell culture systems appear to increase
viral attachment and entry into cells due to assistance from heat shock proteins [24-26]. All of
these parameters affect viral population dynamics in the vector that in turn will affect virus
transmission rates at the population level [27-29]. In Drosophila, higher ambient temperatures
have been shown to increase Wolbachia replication rates too but can also become lethal
depending on the strain [30-35]. Ae. aegypti infected with the wMel strain of Wolbachia
exhibit reduced maternal transmission rates in response to heat spikes that can lead to the pro-
duction of uninfected offspring [36]. More recently, several studies in Drosophila species have
demonstrated that Wolbachia infection can change the host insect’s thermal preference [37],
of which the directionality varies by bacterial strain [38]

More broadly, infection in invertebrates has been shown to substantially increase host or
vector susceptibility to thermal stress [39-42]. A recent study conducted by Hector et al., 2019
showed that Daphnia magna (water flea) infected with the bacterial pathogen Pasteuria ramosa
exhibit a reduction in thermal limits up to 2°C. In Drosophila melanogaster, immune activation
induced by bacterial challenge was shown to affect the temperature at which physiological fail-
ure occurred, reducing the overall thermal tolerance (i.e. critical thermal maximum) of the
host [39]. Parallel studies have not been carried out for the major mosquito vectors of human
disease-causing viruses. In the case of Wolbachia, a single study in Ae. aegypti has revealed that
exposure to heat stress made the vector susceptible to starvation in the presence of the symbi-
ont [43]. Both DENV and Wolbachia are pervasive throughout mosquito tissues [44, 45] and,
therefore, have substantial potential to affect host physiology either directly at the cellular level
or indirectly through physiological tradeoffs resulting from activation of the vector’s immune
response [46, 47].

Laboratory-based physiological performance assays are commonly used in invertebrates to
characterize thermal tolerance [39, 48, 49]. By use of either dynamic or static regimes, these
assays provide physiological parameter estimates to inform species distribution models
(SDMs). SDMs are important tools used for predicting changes in climate and the response of
species and habitats to environmental perturbations. One of the climatic factors commonly
used in SDMs is temperature, as it is a major determining factor in the fitness of ectotherms
like insects. Critical thermal maxima experiments have been shown to effectively predict an
organism’s geographic range [50-54]. More specifically, studies using these experimental
assays have suggested that tolerance to extreme heat events near upper critical limits is more
indicative of species distributions than tolerance to average daily temperatures [50]. In this
study, we used a thermal knockdown assay at a temperature near mosquito upper thermal lim-
its to examine the impact of DENV and Wolbachia infection, singly and in coinfection, on Ae.
aegypti thermal tolerance. We hypothesized that the two agents would increase mosquito sen-
sitivity to heat. Any such effect would have the potential to mediate global disease distributions
as well as the geographic range over which Wolbachia-based biocontrol may be effective.

Results
DENV-infected mosquitoes have greater theromosenstivity

By immersing individual mosquitoes in glass vials in water heated to 42°C, which is beyond
the critical maximum temperature, and measuring their time to immobilization, we obtained a
measure of ‘knockdown’ (KD) time (Fig 1). This assay and others like it are commonly used in
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Fig 1. Experimental setup to measure thermal sensitivity of DENV- and Wolbachia-infected mosquitoes.

https://doi.org/10.1371/journal.pntd.0009548.9g001

Drosophila species to obtain estimates of thermal sensitivity but has not previously used to
study mosquitoes.

To test whether DENV and or Wolbachia infection alter mosquito thermal sensitivity, we
submerged mosquitoes (+/- Wolbachia, +/-DENV) in glass vials in a water bath heated to
42°C, representing the upper critical thermal limit (CT,,,,) for the mosquitoes, as determined
by pilot assays. We then visually monitored the time it took for mosquitoes to become immo-
bilized (on their backs), and this ‘knockdown’ (KD) time was recorded using a barcode
scanner.

First, we fed DENV to 9-day-old mated female mosquitoes via a blood meal and then
allowed the virus to replicate for 8 days before performing the knockdown assay. Age-matched
controls were fed virus-free blood of the same donor and stock. Mosquitoes infected with
DENV showed a greater sensitivity to heat (Fig 2) (according to a generalized linear model; S1
Table: ‘DENV Infection™ F = 22.46, df = 2, p<0.0001), an effect observed to vary among tem-
poral replicates (“Replicate”: F = 5.07, df = 3, p = 0.035). On average, DENV-infected mosqui-
toes had a median KD time that was 2.9-fold faster than that of DENV-uninfected mosquitoes.
Tukey’s post-hoc comparisons indicated that the impact of DENV was significant (p<0.0001)
for 2 of the 4 temporal replicates (S2 Table). As genetic and environmental effects should be
uniform across replicates, differences in the impact of DENV could be explained by day/circa-
dian rhythms. There was, however, no clear trend of KD time decreasing or increasing with
time of day/sequential replicate.

Viral load does not determine time to thermal knockdown

We then examined whether there was a relationship between viral load and time to knock-
down (Fig 3), as pathogen load often predicts virulence in many systems, including DENV
[55]. Surprisingly, we saw no such relationship between dengue load and knockdown time in
our) WT+(Wildtype) line (Pearson correlation, df = 57, p>0.05) despite that mosquito body
loads ranged from 10° to 10°® viral genome copies/mosquito.

Thermal limits under viral and bacterial infection

Several Wolbachia strains are being released globally [56, 57]. Here, we used wAlIbB, a strain
transferred from Aedes albopictus [10] into Ae. aegypti that has shown promise with respect to
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Fig 2. Thermal limits under viral infection. Knockdown time is expressed in seconds for DENV-infected (D+) and
DENV-uninfected (D-) mosquitoes with no Wolbachia present in either treatment. Each replicate (4) contained 20
individuals per treatment (40 total per block). Box plots represent individual replicate medians and confidence
intervals. Both the factors ‘DENV Infection’ (p<0.001) and ‘Replicate’ (p = 0.035) were significant by ANOVA. p-
values report Tukey’s post hoc comparison for each replicate.

https://doi.org/10.1371/journal.pntd.0009548.9g002

reducing incidence of dengue fever following field releases in Malaysia [57]. We assessed the
effect of Wolbachia infection (wAlbB) vs. wildtype on mosquito knockdown time in associa-
tion with DENV infection (+/-) (Fig 4). In our generalized linear model (DENV + Wolbachia
+ DENV:Wolbachia + Rep), ‘DENV infection’ (F = 94.64, df = 1, p < .0001), “‘Wolbachia infec-
tion’ (F=23.75,df = 1, p < .0001), and ‘“Temporal Replicate’ (F = 5.05 df = 5, p = 0.0002) were
all significant, with both infections increasing thermal sensitivity or decreasing knockdown
(KD) time (S3 Table). There was also a significant interaction between ‘DENV infection’ and
‘Wolbachia infection’ (F = 55.68, df = 1, p < .0001). Because “Temporal Replicate” was signifi-
cant, we then followed with individual ANOV As for each replicate (S4 Table) so that we could
carry out individual Tukey’s post hoc comparisons (S5 Table). In 6/6 replicates, DENV infec-
tion significantly reduced KD time. On average, across replicates, the median KD time of
DENV-infected mosquitoes (D+W-) was 4.5-fold more rapid (Fig 4) than that of uninfected
controls (D-W-). This knockdown (KD) appears to be faster than that seen in experiment 1
(Fig 2), but comparisons across experiments are not valid given different virus preparations
and use of separate mosquito cohorts. Wolbachia infection also reduced median KD time in
4/6 replicates (#s 2, 4-6), conferring a 2.5-fold faster average KD time than WT mosquitoes in
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Fig 3. Relationship between viral load and thermal knockdown in mosquitoes. Relationship between knockdown
time (seconds) and DENV load (per mosquito) in wildtype (D+/W-) mosquitoes. Each point represents a single
mosquito with individuals from all 4 replicate experiments. There was no significant relationship (Pearson correlation,
p>0.05) between knockdown time and DENV load for the pooled set or for individual replicate experiments.
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the absence of DENV (D-W+ vs D-W-). Not surprisingly, the double-negative state (D-W-)
has alonger KD time than D+W+ for all 6 replicates. If Wolbachia-mediated blocking was pro-
tecting the mosquito from DENV-induced thermal sensitivity, it would be seen in the D+W-
vs D+W+ comparison. None of these comparisons were significant for any of the replicates.
Additionally, if the two infections were additive, one would expect D+ W+ to have a faster KD
time than either D+W- or D-W+. None of these comparisons are significant for any of the

REP 1 REP 2 REP 3
4000 4000+
3000 3000
2000 2000+
1000 . 1 1000
0 o=

4000

4000

3000~ 3000

2000

Time to Knockdown (secs)

2000

1000 1000:

D+ D- D+ D- D+
w- w- w+ w+ w-

D+ D- D+ D- D+ D-
w+ w+ w- w- w+ w+

£ 34

Fig 4. Impact of dual microbe infection on mosquito thermal sensitivity. The effect of Wolbachia and DENV
infection on knockdown time (seconds) across 6 temporal replicates, each containing 10 mosquitoes per the 4
treatment combinations. Box plots represent individual replicate medians and confidence intervals for wildtype
infected (D+/W-) and uninfected (D-/W-) mosquitoes, along with Wolbachia infected (W+) and uninfected (W-)
individuals. Key Tukey’s post hoc comparisons for each replicate are described in the text and S5 Table. In brief, the
effects of DENV and Wolbachia individually were significant in all 6 replicates, as was the comparison between the
single infection (DENV) and the double infection (DENV and Wolbachia).

https://doi.org/10.1371/journal.pntd.0009548.9004
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Fig 5. Relationship between bacterial load and time to knockdown in mosquitoes. Each point represents a single
mosquito, with individuals from all 4 replicate experiments presented on one graph. There was no significant
relationship (Pearson correlation, p<0.05) between knockdown time and Wolbachia load for the pooled set or for
individual replicate experiments analyzed separately (S6 Table).
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replicates. However, in only one replicate (#5), the DENV effect is greater than the Wolbachia
effect (D+W- vs D-W+), increasing KD time. This pattern of DENV potentially being stronger
than Wolbachia is also in keeping with that Wolbachia was significant in 5/6 ANOVAs com-
pared to 6/6 for DENV (54 Table).

Microbial load does not determine time to thermal knockdown

As in Experiment 1 above, there was no evidence that KD time was determined by DENV load
in Experiment 2 (Pearson correlation, df = 98, p = 0.2048) (S1 Fig). As for DENV above, we
examined whether a relationship existed between total body load of Wolbachia and knock-
down(KD) time (Fig 5). There was no significant relationship for the data when pooled across
replicate (Pearson correlation, df = 117, p>0.05) or when analyzed individually (S6 Table).
Interestingly, we noted that Wolbachia loads were lower when DENV was present (Figs 5 and
S2; F =1.924, df = 116, p<0.0001), which may relate to a virus-induced immune killing of Wol-
bachia or resource competition between Wolbachia and DENV, as both microbes share similar
host resources [58]. We therefore also split the mosquitoes into DENV+ or -, pooled across
replicates, and retested for a correlation between Wolbachia load and knockdown(KD) time
but saw none for either D+ W+ (p>0.05, df = 57) or D-W+ (p>0.05, df = 46).

Discussion

The impact of DENV infection on vector thermal sensitivity has implications for global dengue
risk under a changing climate. Numerous studies have mapped the likely range of Ae. aegypti
into the future, based on its current occupation of global thermal zones and mechanistic effects
of temperature on mosquito and pathogen traits [14, 15]. At lower temperatures, the virus may
fail to replicate fast enough to traverse the mosquito body and be transmitted [59], reducing
transmission risk in some areas. At slightly higher temperatures, the virus may replicate faster
until reaching a performance maximum of its own [23]. Our work suggests an additional fac-
tor may affect viral success in a temperature-dependent manner—the impact on mosquito
survival.
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Although the assay used here represents a simplified model of heat stress, future climate
models point to increasing frequencies of extreme temperature events, making short exposures
to high temperatures a threat to the survival of DENV and Wolbachia infected mosquitoes.
Substantial evidence from Drosophila and other insects suggests that their ability to survive
heat stress is highly predictive of an insect’s current distribution and therefore also likely its
future range [48, 49]. Thermal sensitivity (KD) measures, specifically, have been shown to be a
relevant proxy for fitness under field relevant conditions [50]. In agreement with this, variation
seen in Drosophila populations for measures such as thermal knockdown (KD) time is predic-
tive of an ability to respond to artificial selection for thermal resistance/sensitivity, and as a
result single trait physiological measures like these can be used effectively for developing
SDM:s [51, 60].

The findings for Wolbachia wAlbB indicate that the symbiont increases mosquito thermal
sensitivity, although not to the same level as DENV. Both agents infect a diversity of tissues
throughout the body [11] and, although not cytotoxic, evoke an immune stress response in Ae.
aegypti [61, 62]. Most studies suggest that DENV has little effect on host fitness except in rare
cases [63] Additionally, because Wolbachia lacks a complete set of metabolic pathways, it rep-
resents an energetic drain on host resources, including amino acids [64]. Three outcomes were
possible for the relationship between DENV and Wolbachia coinfection and KD time, namely,
protective, additive, or similar. A protective effect might have been expected given that Wolba-
chia-mediated blocking is known to limit DENV loads in the body [61] (also seen in this study
S3 Fig), although we did not see a correlation between Wolbachia and DENV loads (r = -0.052,
p =0.96). This would only be the case if increasing loads of DENV led to faster KD times, but
we saw no relationship. An additive effect might have suggested that the two infectious agents
acted on independent aspects of mosquito physiology and both cause thermal sensitivity. We
saw no difference in thermal sensitivity between the single and doubly infected mosquitoes.
We also saw no relationship between Wolbachia load and KD time, like DENV, indicating that
having more of either agent did not lead to greater virulence. Taken together, our data agree
with a model of the symbiont and virus acting via a shared mechanism. One possible explana-
tion is that the microbes activate similar innate immune pathways [47, 61, 65]. The effect of
this activation may have direct pleiotropic effects on thermal tolerance or act through energetic
tradeoffs. Interestingly, any triggering of the heat shock response by DENV infection [62] itself
was not powerful enough, or long lasting enough, to mitigate the impact of either DENV or
Wolbachia on KD times.

To capture the impact of viral infection upon mosquito thermal limits, we assayed individu-
als in the thermal KD setup by using a static tolerance assay as compared to a dynamic assay,
in which the insect is gradually exposed to ramping temperatures until thermal knockdown
(KD) is achieved. However, whether these two physiological assays provide comparable mea-
sures for heat tolerance has been questioned [66]. The overall outcome for both assays is
dependent on the duration of heat exposure and the temperature at which thermal stress
occurs [50]. In nature, ambient temperatures are rarely constant, and mosquitoes and their
pathogen are subjected to temperatures that may fluctuate throughout the day [67]. Dynamic
assays have been promoted for their ecological relevance due to their gradual increase in tem-
perature versus an acute exposure to high temperature [68, 69]. A study conducted by Rezende
et al., 2014 looked at this interaction between the intensity of heat stress and exposure duration
through the development of thermal tolerance landscapes (TTLs), which depict the parametri-
zation of survival time as a function of constant temperatures plus thermal exposure duration.
In a past study, this group showed that TTLs are able to predict survival in thermally variable
environment’s when using empirical data that have incorporated either dynamic or static mea-
sures of thermal stress.
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To mediate any discrepancies between dynamic and static assays, Jergensen et al., 2019
developed a model that allowed for the direct comparison of static and dynamic measures of
heat tolerance from KD data obtained from Drosophila [50]. They showed that a dynamic
CTmax, at any given heating rate, can be effectively modeled from static measurements like
ours and used to predict species distributions [50]. Although the assay we used is a simplified
representation of heat stress, future climate models point to increasing frequencies of extreme
temperature events, making short exposures to high temperatures relevant. Future studies
should examine these effects in the context of diurnal temperature range variability reflecting
natural temperatures and repeated exposure to heat shock events.

Transient exposure exceeding the mean temperature beyond thermal optima can have
costly fitness effects on an individual [70, 71]. Maximum thermal tolerance in an individual is
dependent on cell performance and actions of different systems, including respiratory, circula-
tory, and nervous [72, 73]. High heat denatures enzymes and disturbs cellular membranes that
thus impact cellar processes that the insect may rely on to function [72, 73]. Our measurement
of thermal limits may have some confounding impacts on desiccation or starvation stress [74].
However, studies with Drosophila show that an exposure time of 60-90 minutes was not suffi-
cient to trigger either a starvation or desiccation response [69]. Additionally, in our system,
these responses were likely minimized because mosquitoes were provided sugar water and
vials were not sealed until 25 minutes before their thermal knockdown with humid air [69].
Future research examining the interaction of multiple related stressors will provide interesting
insight into the range of responses that might be seen in wild populations with more complex
environments under predicted climate shifts. Additionally, our study did not allow for the host
to respond behaviorally to heat stress. In the field, mosquitoes may use various responses, such
seeking shade or cooler areas, when thermally stressed [75]. In general, they may also close spi-
racles to reduce dehydration and activate a series of pathways at the cellular level, including
heat shock [62, 76].

Daily and seasonal fluctuation is higher in temperate regions, whereas tropical areas experi-
ence less seasonality [77]. Species from temperate areas and high-altitude regions have broader
thermal tolerance thresholds, as they can tolerate warming due to their ability to respond to
variable temperatures [78]. Tropical species like mosquitoes, however, are living close to their
optimal temperatures for performance [67, 79] and experience little variation in daily and sea-
sonal fluctuation [77, 80, 81]. The impact of global climate change on mosquito-borne disease
will depend strongly on species thermal history and their overall tolerance and ability to with-
stand change and adapt [16, 70, 82, 83]. The context of our findings should be considered
within the realm of local thermal adaption, which may lead to different responses between
populations, and how they respond to thermally taxing conditions. Furthermore, environmen-
tal conditions experienced across the larval stage of the mosquito can have an impact on mos-
quito response to thermal stress [84]. Thermal acclimation can a happen within a population
and affect subsequent adult traits that can happen irrespective of any local adaption [67, 79]. In
our case, mosquitoes were lab reared at constant temperatures, but if larval rearing conditions
varied within a range of thermal conditions or mosquitoes were locally adapted, we may con-
clude that KD could differ depending on their prior thermal exposure.

With this study, we now add increased thermal sensitivity to a list of heat-associated effects
for adult Wolbachia-infected mosquitoes that include increased susceptibility to starvation
[43], reductions in maternal transmission rates of Wolbachia, and loss of cytoplasmic incom-
patibility [36]. These temperature-associated effects may reduce the competitiveness of Wolba-
chia-infected mosquitoes in extremely hot or variable environments and affect the efficacy of
the biocontrol strategy. Additionally, Wolbachia transinfected into mosquitoes induces fitness
costs that produce bistable frequency equilibria, which limit how the symbiont spreads in
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populations when established from low infection frequencies [85]. Increased thermal sensitiv-
ity may contribute to these net fitness costs and bistable equilibria. Naturally occurring Wolba-
chia infections commonly evoke a lower immune response, potentially from a longer history
of coevolution with their hosts [86]. One solution for protecting Wolbachia’s use for biocontrol
in hotter regions might involve adapting mosquito: Wolbachia pairings to higher temperatures
or for reduced immune responses in the laboratory by using artificial selection before release
into the field.

Several factors may have affected our study design or should be considered in future stud-
ies. First, the effect of infection on KD time may rely heavily on the combination of Wolbachia
strain, virus and mosquito genotypes, and their past histories of thermal adaptation. Addition-
ally, some genotypes of both the host and pathogen may be better able to compensate for ther-
mal stress [40]. Thermal tolerance should therefore be examined for combinations of key
circulating viruses and Wolbachia release strains in diverse Ae. aegypti populations from dif-
ferent global regions. Second, factors like mosquito age at exposure, reproductive status, body
size or nutritional status, blood meal history, and other coinfecting microbes/the microbiome
may also play a role in thermal tolerance. Third, as for the Drosophila literature [48], it will be
important to assess how these laboratory measures of thermal sensitivity relate to fitness mea-
sures in the field and how the interaction between viral infection and temperature affect the
distribution of virus transmission. Fourth, it would be interesting to assess whether thermal
sensitivity effects due to Wolbachia are also present in the larval stage. If so, they may affect the
successful field release of Wolbachia via egg stage [87].

In conclusion, our work suggests that DENV- and Wolbachia-induced increases in mos-
quito thermal sensitivity may limit the geographic range of the virus’s transmission to humans
and the ability of the symbiont to be used for biocontrol. We suggest that future models pre-
dicting dengue distribution may also need to incorporate the interaction between virus and
vector survival to be accurate, particularly at the edge of a mosquito’s distribution where the
potential impact of these microbes would likely be greatest in hotter and more thermally vari-
able regions of the mosquitos’ range.

Materials & methods
Mosquitoes

Within a year of this study, the wAIbB Wolbachia-infected Ae. aegypti line was backcrossed for
7 generations to a wild-caught mosquito line (AFM-Wildtype [WT]), that was collected from
the field in Mérida, Mexico, by Pablo Manrique. This process homogenized the nuclear genetic
background with the field line but would have retained the mitochondria from the Wolbachia-
infected line. We used this continuously maintained line (~1 year) for the DENV+/- experi-
ments. Furthermore, because this population was not naturally infected with Wolbachia, we
also used it as a negative control for subsequent Wolbachia experiments. Both lines were
reared under standard conditions: 12hr light/dark, 26°C, 60% relative humidity, ad libitum
Tetramin fish food at the larval phase, and 10% sucrose as adults.

Virus

We used DENV serotype 2 for all experiments, as it has been previously shown to form strong
infections in the mosquito in the laboratory [11]. Originally isolated from a patient in East
Timor, the ET-300 strain (GenBank EF440433.1), with approximately 20 passages, was used in
the assay, as done previously in a study of Wolbachia:mosquito:DENV interactions [88]. Ae.
albopictus C6/36 cells were grown at 26°C in RPMI 1640 medium (Invitrogen, Carlsbad, CA)
supplemented with 10% fetal bovine serum (FBS), 1x Glutamax (Invitrogen), and HEPES
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buffer. Cells were first allowed to form monolayers of around 60-80% confluence in T-175
flasks (Sigma Aldrich, St. Louis, MO) and then were inoculated with DENV and maintained in
RPMI medium supplemented with 2% FBS. At day 7 post-inoculation, live virus was harvested,
titrated via absolute quantification RT-qPCR, and adjusted to a final viral load of 10" DENV
copies per ml.

Mosquito infections with DENV

Before an infectious blood meal, mated, 9-day-old female mosquitoes were sorted into groups
of 100 in 68-0z paper cartons. Sucrose was removed from the mosquitoes 24 hrs before oral
infection and replaced with water. Double-chamber glass feeders were covered with pig intes-
tine previously immersed in a 10% sucrose solution. Water heated to 37°C was circulated in
the outer chamber of the feeders, and a 1:1 mix of defibrinated human blood and the previ-
ously titrated DENV virus was placed inside the feeder. The final feed concentration was 2.5¢”
DENV copies/ml. In parallel, all DENV - mosquitoes were fed a solution containing a 1:1 ratio
of blood without virus and RPMI 1640 cell culture media to serve as mock controls. After 24
hrs, all blood fed mosquitoes were identified by visual inspection under chilling and returned
to the cartons.

Thermal knockdown assay

The thermal sensitivity of infected and uninfected mosquitoes was measured using a static
heat shock assay (Fig 1) based on previous work in Drosophila [89]. KD experiments were car-
ried out at 42°C, as pilot studies indicated this temperature represented the critical thermal
maximum of the mosquitoes (S7 Table). Exposure to 42°C led to death in 97% of individuals
trialed in the WT line even without the presence of DENV. From the literature, this tempera-
ture also represents some of the upper thermal extremes insects may encounter in nature due
to global climate change [17]. Mosquitoes were moved 24 hrs after blood feeding to individual
40-ml glass vials with mesh lids topped with cotton balls soaked in 10% sucrose that were
changed daily. All vials were housed in environmental chambers maintained at 26°C and 65%
relative humidity. Knockdown (KD) assays were performed 8 days after blood feed, allowing
time for the virus to disseminate throughout the body and affect mosquito physiology [19].
Before each assay (<25 minutes), the mesh lids to the vials were replaced with solid plastic.
The assays themselves were also carried out in the environmental chambers, so air captured in
the vials upon sealing was at 65% relative humidity. The vials containing the mosquitoes were
then attached to a plastic board in groups of 40 via anchored clips, randomized with respect to
treatment. The board with vials was immersed in a water bath heated to 42°C and allowed a
60-second acclimation period. Mosquitoes were then monitored visually for immobility and
time to thermal knockdown (KD) was scored using Brady labels and a TriCoder Scanner
(Worth Data Inc., Santa Cruz, California). Immobility was confirmed by tapping on the vial
while it was still immersed in the water bath. Mosquitoes did not recover after thermal knock-
down(KD). The DENV status of all individuals was confirmed by PCR as described below.

Mosquito nucleic acid extraction

Upon completion of each KD experiment, individual whole mosquitoes were anesthetized by
chilling and placed in 1.5-ml microfuge tubes (Sarstedt, Niimbrecht, Germany) containing
300 ul of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and a 2.8-mm ceramic bead. Sam-
ples were homogenized on a Bead Ruptor Elite (Omni International, USA) and then frozen at
-80°C. Total RNA was extracted with the Direct-zol RNA 96 Magbead Zymo kit (Zymo
Research, Irvine, CA) according to the manufacturer’s protocol. Following this step, the
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samples were processed using an automatic magnetic bead purification system (MagMAX
Express 96 system, Applied Biosystems). RNA was eluted in 50 pl RNase free water. RNA was
then treated with 5 units of DNase I (Sigma-Aldrich) at room temperature for 15 min, fol-
lowed by inactivation with 50 mM EDTA at 70°C for 10 min. To measure Wolbachia loads,
extractions for both RNA and DNA were performed using the column-based Direct-zol DNA/
RNA Miniprep kit. RNA was eluted in 50 pl RNase free water, followed by DNA elution in

50 pl of Direct-zol DNA Elution Buffer. Total RNA and DNA concentrations were determined
with a NanoDrop model 2000/2000C (Thermo Scientific, Waltham, MA).

DENYV quantification

DENV virus was quantified using TagMan Fast Virus 1-step Master Mix (Thermo Fisher Sci-
entific) in 10-pl reaction volumes with DENV-specific primers and probes [90] (S8 Table).
The following protocol was used: reverse transcription at 50°C for 5 min, followed by 50
amplification cycles 95°C for 20 sec, and amplification cycling at 95°C for 3 sec and 60°C for
30 sec. A standard reference curve of known quantities of a DENV-2 genomic fragment was
used for absolute quantification by qPCR. The DENV-2 genomic fragment was previously
inserted into a plasmid and transformed into Escherichia coli as described [90]. The linearized
and purified fragment was serially diluted ranging from 10”to 10 copies and used to create a
standard curve of DENV amplification. The standard curve was run in duplicate on each
96-well plate, and the limit of detection was set at 10* copies. All samples were run in
duplicate.

Wolbachia quantification

Wolbachia load was assessed as previously reported including published primers and probes
[90]. In brief, a multiplex qPCR reaction amplifying the target Wolbachia-specific surface pro-
tein wsp and mosquito ribosome subunit 17 housekeeping gene RpS17 was performed. The
RpS17 gene was used to normalize wsp gene copies. Quantitative PCR reactions were run in
duplicate and performed in a 10-pl total volume containing 1x Lightcycler 480 Probes Master
reaction mix, 5 pM of each wsp primers and probe, 2.5 uM each of RpS17 primers and probe,
and 1 pl of DNA template. Cycling was performed using a LightCycler480 Instrument
(Roche), with 1 cycle at 95°C for 5 min; followed by 45 amplification cycles of 95°C for 10s,
60°C for 15 s, and 72°C for 1 s; and a final cooling cycle of 40°C for 10 s. Target to housekeep-
ing gene ratios were calculated using the Livak’s 27**“" method relative quantification algo-
rithm in the Lightcycler 480 software (Roche).

Experimental design and statistical analysis

In the first set of experiments, mosquitoes without Wolbachia were infected with DENV (pas-
sage 36) as described above and tested for KD in 4 temporal replicates each containing 20 indi-
vidual mosquitoes per treatment (+/-DENV). All mosquitoes were from the same generation/
population of mosquitoes. In the second set of experiments, we explored both Wolbachia (+/-)
and DENV (+/-) infection. Wolbachia-free mosquitoes were drawn from the same population
as above, 3 generations hence. As for the first experiment, live virus was cultured to feed to
these mosquitoes, from virus passaged 38 times. Any mosquitoes not infected with DENV in
DENV+ treatments (~4% in W- mosquitoes in experiments 1 and 2 and 53% W+ mosquitoes
in experiment 2) were excluded from the data analysis. All knockdown data were log trans-
formed before analysis to correct issues with skew. In experiment 2, each of the 4 combinations
of infection status was represented by 10 individual mosquitoes in a temporal replicate. These
experiments were then replicated 6 times (blocks). All statistics were carried out using JMP
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Version 4 for Mac (SAS Institute Inc., Cary, NC, USA). Knockdown (KD) time was examined
using general linear models with ‘DENV infection,” ‘temporal replicate,” and ‘Wolbachia infec-
tion’ as fixed effects where relevant. The relationships between each DENV load and Wolba-
chia load and KD time were examined with Pearson’s correlation.
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