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Abstract The last few decades have seen a growing

number of species invasions globally, including many

insect species. In drosophilids, there are several

examples of successful invasions, i.e. Zaprionus

indianus and Drosophila subobscura some decades

ago, but the most recent and prominent example is the

invasion of Europe and North America by the pest

species, Drosophila suzukii. During the invasive

process, species often encounter diverse environmen-

tal conditions that they must respond to, either through

rapid genetic adaptive shifts or phenotypic plasticity,

or by some combination of both. Consequently,

invasive species constitute powerful models for inves-

tigating various questions related to the adaptive

processes that underpin successful invasions. In this

paper, we highlight how Drosophila have been and

remain a valuablemodel group for understanding these

underlying adaptive processes, and how they enable

insight into key questions in invasion biology, includ-

ing how quickly adaptive responses can occur when

species are faced with new environmental conditions.
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Introduction

The majority of agriculturally-important invasive

species are insects (Ziska et al. 2010). Many of these

species are flies (Diptera) (e.g. Tephritidae Hill et al.

this special issue) and include the so-called ‘‘fruit

flies’’ (Diptera: Drosophilidae). For instance, the well

known cosmopolitan species Drosophila melanoga-

ster has an Afrotropical origin, colonizing Europe

circa 16,000 ya (Li and Stephan 2006), and subse-

quently the rest of the world most likely assisted by

humanmigration (David and Capy 1988; Laurent et al.
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2011). Zaprionus indianus and Drosophila subob-

scura also represent examples of more recent colo-

nizations on the American continents (Brncic et al.

1981; Vilela 1999). But the most recent, and high

profile, example is probably the successful invasion of

Europe and North America by the pest species,

Drosophila suzukii (Calabria et al. 2012; Cini et al.

2012; Asplen et al. 2015).

During the invasion process, species often encoun-

ter diverse environmental conditions that they must

respond to either by rapid evolutionary shifts, pheno-

typic plasticity or more probably, by a combination of

these two mechanisms. Indeed, many invasive species

display evidence of rapid adaptive evolution (Sim-

berloff and Rejmánek 2011; Urbanski et al. 2012; Hill

et al. 2013 see also Prentis et al. 2008 for review in

plants). Consequently, they represent powerful models

for investigating various questions related to the

adaptive processes that can occur during invasions:

how quickly and by what mechanisms do invaders

evolve adaptations? What are the most common

mechanisms involved? Is plasticity more important

than genetic adaptation or is some combination of both

the norm for invasive species in the newly invaded

range? Invasive species enable these questions to be

addressed using either a synchronic approach, i.e. by

comparing populations in the native range and in the

newly colonized area, or a diachronic approach, i.e. by

monitoring population’s genetic (or phenotypic) vari-

ation over time (Hendry and Kinnison 1999).

In this perspective, we outline why Drosophila

species are highly valuable model organisms to inves-

tigate biological invasions. Due to the wealth of

research conducted on these species, there are a number

of established protocols and techniques that promote

using Drosophila species for such studies. First, in

many cases Drosophila species are easy to rear in the

laboratory, and their short generation time (e.g. about

14 days at 25 �C in D. melanogaster) allows for a

diverse array of laboratory experiments, in particular

common garden experiments, quantitative genetic and

experimental evolution studies. The experiments can

most easily be achieved through the method of

isofemale lines (established by isolating females col-

lected in nature in separate culture vials to initiate half-

sib families) (see Hoffmann and Parsons 1988; David

et al. 2005 for a discussion about the pros and cons of

this method). Second, because of their short generation

time and the fact that they can have several generations

during a year, Drosophila species are able to undergo

rapid evolutionary shifts as shown either by experi-

mental evolution in the laboratory (e.g. Hoffmann et al.

2003 on D. melanogaster and Santos et al. 2012 on D.

subobscura) or by following populations of an invasive

species through time (Balanyà et al. 2009, on D.

subobscura). Third, the number of Drosophila species,

in addition to D. melanogaster, that have molecular

tools and genomic data available (over 12 sequenced

Drosophila genomes, Clark et al. 2007), is expanding

rapidly, enabling in-depth studies of the genetic mech-

anism(s) that underpin the invasion process. Finally,

manyDrosophila species have broad geographic ranges

(David and Tsacas 1981) that span environmental

gradients. This further promotes the use of Drosophila

in studies dissecting the genetic basis of adaptation to

new environments at the phenotypic and molecular

level. For example, D. melanogaster has a cosmopoli-

tan distribution, with latitudinal clines observed in

different continents for many morphological (pigmen-

tation: David et al. 1985; Munjal et al. 1997; Telonis-

Scott et al. 2011; Bastide et al. 2014—body size: Coyne

and Beecham 1987; Capy et al. 1993; Imasheva et al.

1994; James et al. 1995; Van’t Land et al. 1995) and

physiological traits (alcohol and acetic tolerance: David

and Bocquet 1975; Parsons 1983; desiccation and

starvation resistance: Karan et al. 1998; Hoffmann et al.

2001; high and low temperature resistance: Hoffmann

et al. 2001; Sgrò et al. 2010; circadian rhythm

modulation: Sawyer 1997; Kyriacou et al. 2008). Such

latitudinal clines, which exist for several other wide-

spread species of Drosophila are generally interpreted

as being a consequence of adaptation to local climatic

conditions, with temperature generally considered as

the major environmental factor.

In this paper we highlight how Drosophila are a

powerful system with which to empirically understand

the adaptive processes that mediate the invasion of

new environments.

The invasion process needs a rapid adaptive

response to new environmental conditions

Understanding the importance of genetic variation

during the invasion process

In the case that an invasive species encounters novel

environmental conditions and thus new selection
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pressures, a rapid evolutionary change is often

required for population persistence (Sakai et al.

2001; Lee 2002). Such rapid adaptive responses

require adequate genetic variation in the trait(s) under

selection. However, the invasion process may start

with a small number of initial propagules. Such

bottlenecks can result in strong genetic drift and a

subsequent reduction of genetic variation in newly

established population(s) (Nei et al. 1975), thereby

limiting their capacity to evolve. However, it has also

been demonstrated that under certain conditions,

bottlenecks can lead to the purge of deleterious alleles

that lead to inbreeding depression (e.g. Swindell and

Bouzat 2006 in D. melanogaster). Such effects could

have positive consequences on the fitness of the

invader and help facilitate invasion (Facon et al.

2011). Evaluating the extent of change in genetic

diversity during and after the colonization of novel

environments may help understand the invasion

process, which can be achieved by addressing key

questions: What is the source population for the

invasion? How much genetic variation is lost during

the first step of the invasion (size of the propagule,

multiple introductions)? What is the temporal and

spatial pattern of invasion?

In Drosophila, the genetic variance and adaptive

capacity of populations can be investigated using

quantitative genetic breeding designs (e.g. van Heer-

waarden and Sgrò 2013; Blackburn et al. 2014) and

selection experiments (e.g. Kristensen et al. 2015).

Alternatively, comparison of isofemale lines (each

line established by a single field-inseminated female)

can be used to estimate the genetic variability of a

population by calculating the coefficient of intraclass

correlation, t (Hoffmann and Parsons 1988; Falconer

1989). While genetic variability estimated using this

method is likely to include dominance and epistatic

effects in addition to the additive genetic variance of

the traits in question, it nonetheless provides some

insight into the adaptive capacity of populations

(David et al. 2005). Further, maintaining isofemale

lines at a large census population size and assessing

them within several generations of being initiated will

minimize any potential effects of inbreeding (Hoff-

mann and Parsons 1988). For example, Arthur et al.

(2008) compared isofemale lines of Drosophila sim-

ulans collected from along the east coast of Australia

to understand the link between genetic variance,

climatic selection and phenotypic evolution. Their

study revealed complex patterns of adaptive diver-

gence in response to climatic selection; while body

size and starvation resistance showed linear clines, a

non-linear pattern was evident for female, but not

male, cold resistance, while no clines were evident for

development time and desiccation resistance.

The importance of phenotypic plasticity

Phenotypic plasticity, the ability of an individual to

express different phenotypes in response to environ-

mental conditions (Bradshaw 1965; Pigliucci 2001;

West-Eberhard 2003; DeWitt and Scheiner 2004),

allows populations to respond to changing environ-

ments within very short time scales (intra-generation)

and can play an important role in the survival of

invasive species (Richards et al. 2006; Chown et al.

2007). Invasive species are thought to have a greater

plasticity in ecologically important traits than non-

invasive species, and populations of invasive species

are expected to evolve greater phenotypic plasticity in

their new invasive range compared to populations

within the native range (but see Richards et al. 2006

for a discussion in plants and Lande 2015 for recent

theoretical work). The hypothesis that greater pheno-

typic plasticity contributes to the success of an

invasion has been supported by some studies (e.g.

Trussell and Smith 2000; Sexton et al. 2002; Daehler

2003; Nyamukondiwa et al. 2010), but not others (e.g.

Chown et al. 2007). According to Lande (2015), this

discrepancy can be explained by several parameters

including the optimal phenotype, the environment in

the new colonized range (mean variance and pre-

dictability), the cost of plasticity and the type of

plasticity (reversible vs irreversible plasticity). It has

also been argued that phenotypic plasticity, by allow-

ing populations to persist under new conditions, may

allow for novel genetic variation that is better suited to

the new conditions to arise (Pigliucci 2005). Specif-

ically, it has been suggested that a rapid transient

increase in plasticity will be followed by slow genetic

assimilation and decreased plasticity (Pigliucci et al.

2006; Lande 2015). Such a mechanism could occur

during the common lag-time between initial coloniza-

tion and the rapid population growth that is charac-

teristic of many invasions.

The study of phenotypic plasticity requires mea-

surements on many genetically identical individuals,

however clones are easily available in plants but not in

Drosophila as models to understand the adaptive process 1091

123



most animals. For natural populations of Drosophila,

isofemale lines are a practical substitute for clonal

populations: individuals of the same line are geneti-

cally more similar than individuals from different

lines, and the descendants of a given line may be

subjected to an environmental gradient where pheno-

types of interest are assessed, thus producing a

reaction norm (David et al. 2004, 2005). Different

lines sourced from the same population will have

slightly different reaction norms (significant geno-

type 9 environment interaction) demonstrating the

presence of genetic variation for phenotypic plasticity

(e.g. David et al. 1997; Gibert et al. 2000, 2004).

Comparison of the reaction norm shape, and therefore

levels of plasticity, between populations can then be

easily undertaken. In most studies of phenotypic

plasticity in Drosophila, the environmental factor

most often considered is developmental temperature

(e.g. Delpuech et al. 1995; David et al. 1997; Klepsatel

et al. 2013), but there are also some studies testing the

effect of nutrient quality (Chippindale et al. 1993) or

photoperiod (Bauerfeind et al. 2014).

Figure 1 shows an example of phenotypic plasticity

in response to developmental temperature measured in

5 isofemale lines of two populations (Paris, France and

Barcelona, Spain) of the invasive D. suzukii (unpub.

results). Climatic conditions in these two locations are

very different, with a typically hotter and dryer climate

in Barcelona than in Paris that could result in local

adaptation of the populations. Measured traits

included recovery time from chill coma (16 h at

0 �C), a trait related to cold tolerance in Drosophila

(Gibert et al. 2001) and wing size. Values of recovery

time (ranging between 7 and 15 min after develop-

ment at 20 �C) suggest that D. suzukii is a temperate

species (Gibert et al. 2001). As expected, phenotypic

plasticity was highly significant for both traits. No

significant differences were observed between the two

populations collected at the same time in 2012, a few

years after the first observation of D. suzukii in both

countries. It is possible that these results may be

experimental artefacts, i.e. caused by low statistical

power or convergent evolution to laboratory condi-

tions. However, it is also plausible that the lack of

significant differences in the thermal reaction norms

between the two populations is due to the fact that too

little time has passed since the two populations

diverged, due to the very high expansion rate of this

species (see Fig. 2A). It will be important to compare

these two populations in few years’ time, to determine

whether divergence in traits that underpin climatic

adaptation have evolved to match local environmental

conditions. Determining whether there are significant

and critical tradeoffs between plasticity and basal trait

expression will also provide further insight into the

processes that sustain a population across these

environments. On the other hand, immigration may

be significant owing to repeated introductions into

these locations (i.e. high propagule pressure), which in

turn may limit adaptive differentiation. This can be

readily tracked using population genomics techniques

(Chown et al. 2015).

When populations have diverged over a longer time

period, significant differences are often found not only

for the mean trait values but also for phenotypic

plasticity itself. For instance, comparisons of thermal

reaction norms between tropical (Congo) and temperate

(France) populations of D. melanogaster for body size

(Haerty et al. 2003) and ovariole number (a trait related

to fecundity in Drosophila, Delpuech et al. 1995) have

been performed. Both traits exhibit concave reaction

norms, with a maximum phenotypic value at an

intermediate developmental temperature. However this

temperature is significantly lower in the temperate than

in the tropical population (confirming the general

latitudinal trend known for these traits, see Gibert

et al. 2004). The most interesting result to emerge from

these comparisons was that, for body size, the temper-

ature of the maximum phenotype was significantly

higher for the tropical compared to the temperate

population, suggesting a lateral adaptive shift in the

reaction norms across populations (Morin et al. 1999).

Investigating the invasion process in Drosophila:

case studies

A number of Drosophila species are known to be

invasive, including the most obvious example of the

domestic African speciesDrosophila melanogaster. D

melanogaster first colonized the Eurasian continent

about 10,000–15,000 years ago (Capy and Gibert

2004; Lachaise and Silvain 2004) and spread more

recently to the American and Australian continents

around 100 years ago (see Hoffmann and Weeks 2007

for a review). Other invasions have been described

more recently, and we have chosen to focus on two

examples; D. subobscura on the American continent
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(Beckenbach and Prevosti 1986; Pascual et al. 2007)

and Zaprionus indianus in Asia and America (Vilela

1999; David et al. 2006), to illustrate how Drosophi-

lids can be used to provide insight into the adaptive

processes that underpin successful invasions.

When the invasion is recent and the history of the

invasion is relatively well known, the process of

adaptation can be investigated either by comparing

divergence between the populations in the introduced

and ancestral ranges or by following populations

during the process of invasion in real time. This is

increasingly undertaken to elucidate pathways of

invasion in other insects, including e.g. the Asian

ladybird Harmonia axyridis (Lombaert et al. 2010),

Mediterranean fruit fly Ceratitis capitata (Karsten

et al. 2015), and Western Corn Rootworm, Diabrotica

virgifera virgifera (Ciosi et al. 2008).

Zaprionus indianus Gupta (1970) (Fig. 2B)

The genusDrosophila is paraphyletic, i.e. it comprises

different groups of species that are classified under

different genus names (Yassin 2013). Of these, species

belonging to the genus Zaprionus form a distinct

group, that is closely related to species of the subgenus

Drosophila of Drosophila (Yassin et al. 2010; Yassin

2013). Among its 70 Afrotropical and Oriental

species, only one, Z. indianus, has recently become

invasive. Despite its name, Z. indianus, is an African

species from the sub-Sahara (Tsacas 1985; van der

Linde et al. 2006; Commar et al. 2012) and now

commonly known as the ‘‘African fig fly’’. From

Africa, Z. indianus is thought to have first expanded

east into Asia (India) (David et al. 2006; Yassin et al.

2008), where it was collected for the first time in 1966

(Gupta 1970) and then, from another African propag-

ule, to America (Yassin et al. 2008). The Indian

invasion has then expanded westward into Pakistan

(Okada and Carson 1983), Saudi Arabia (Chassagnard

and Kraaijeveld 1991), Israel (Harry et al. 1999),

Egypt (Yassin and Abou-Youssef 2004; Yassin et al.

2009a) and Spain (Carles-Tolrá 2009). In the Amer-

icas, the species was recorded for the first time in

Brazil in 1999 (Vilela 1999) and rapidly spread

Fig. 1 Phenotypic plasticity of chill coma recovery time

(A) and wing size (B) in females of different isofemale lines

from two populations (Barcelona, Spain plain lines and Paris,

France dotted lines) of D. suzukii collected in 2012. Lines had

been kept in laboratory conditions on standard Drosophila

medium at 21 �C LD12:12 for 6 months prior to the experi-

ments. For each line, after a day of oviposition at room

temperature (about 20–22 �C), groups of 50 eggs were placed

into 3 different vials and placed at one of the three

developmental temperatures (15, 20 and 25 �C) to complete

development. On emergence, adults were transferred to fresh

food and examined a few days later. Chill coma recovery was

recorded after 16 h at 0 �C for about 10 individuals for each line

and developmental temperature. Wing size was measured in 5

individuals for each line and developmental temperature. Data

were analysed by using a generalized linear model with a

gamma family and inverse link for the chill coma recovery and a

Gaussian family and an idendity link for the wing size. A highly

significant temperature effect was found for both traits

(p\ 0.001) but no significant differences were found between

the two populations for either recovery time (p = 0.58) and

wing size (p = 0.14)
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throughout Brazil and South America (van der Linde

et al. 2006) where it became a major pest of fig

production. It has since been reported in southern

Mexico in 2002 (Castrezena 2007; Markow et al.

2014) and then rapidly spread throughout the USA

(Florida in 2005; van der Linde et al. 2006; California

and Arizona in 2006; Castrezena 2007; Wisconsin in

2012; JE Pool; pers. comm.; Pennsylvania in 2014;

Joshi et al. 2014; Michigan in 2014; van Timmeren

and Isaacs 2014) and Canada (Ontario and Quebec,

Renkema et al. 2013). The Canadian records most

likely represent recurrent introductions from the south

during the warmer summer season rather than well-

established populations, given the extreme cold that

occurs in Ontario and Quebec during winter.

The rate of genetic differentiation between popu-

lations of Z. indianus has been investigated by

comparing populations from the three continents

(Africa, Asia and South America). Several studies

focusing on a range of traits/characteristics, including

genome size (Nardon et al. 2005), chromosomal

inversions (Ananina et al. 2007; Yassin et al. 2009a),

quantitative traits (size and sternopleural bristles

number, David et al. 2006; Yassin et al. 2009b), and

mitochondrial DNA (CO-I and CO-II, Yassin et al.

2008, 2009a) concluded that old world populations

(Africa and Asia) were always more similar to each

other compared to the American populations. For

mitochondrial DNA, however, the level of genetic

variation was highest in Africa, consistent with the

colonization history (Bouiges et al. 2013).

Within continents, significant genetic differences

between populations have been described in India

(Karan et al. 1998, 2000) and Brazil (Loh and Bitner-

Mathé 2005). For instance, in India, latitudinal clines

indicative of rapid adaptive shifts between populations

were observed for size traits (body weights, wing

length and thorax length), reproductive traits (ovari-

oles number) (Karan et al. 2000) and physiological

traits (desiccation and starvation tolerance of adults)

(Karan et al. 1998). Results from ecological niche

modeling of Z. indianus also suggest that the species

has undergone shifts in species-environment

relationships allowing for expansion into novel cli-

matic conditions (da Mata et al. 2010). These shifts

and range expansions may or may not be associated

with adaptive shifts in traits between populations.

Since the South American continent was the most

recently invaded, it provided the opportunity to

investigate the rate of the geographical genetic

differentiation after invasion. In Brazil, significant

differences in wing size and shape between three

populations from three different habitats in Rio de

Janeiro state were observed within only 2 years of the

first record of Z. indianus (Loh and Bitner-Mathé

2005). Once again these results highlight the fact that

rapid adaptive shifts can occur during the invasion

process when species harbor the required genetic

diversity for selection to act upon. In contrast to the

results of Loh and Bitner-Mathé (2005) and David

et al. (2006) compared body size (wing and thorax

size) of populations collected in South America

(n = 5) with African (n = 11 populations) and Indian

populations (n = 11 populations). While they did find

genetically-based differences in size among the

Brazilian populations, these differences did not vary

with latitude. In contrast, a significant increase with

latitude was observed within the Indian and, to a lesser

degree, the African populations. These results further

confirm the fact that divergence in these traits can arise

relatively quickly in response to climatic selection.

The absence of latitudinal differentiation in body size

of the American populations may be a consequence of

insufficient evolutionary time.

Another interesting result of the David et al. (2006)

study was that the American and African populations

displayed similar levels of genetic variability (mea-

sured as the intraclass correlation between isofemales

lines and genetic coefficients of variation) suggesting

that the American colonizing propagule was of a

sufficient size to carry all the genetic diversity of the

origin population. Mattos Machado et al. (2005) found

similar results for the introduced Brazilian popula-

tions. Using allozyme electrophoresis, they compared

the level of polymorphism of Brazilian, African and

Asian populations. They found that genetic distances

and Fst indices among Brazilian populations were

small and generally non-significant, suggesting colo-

nization from a single propagule followed by a rapid

demographic expansion.

Only one experimental study has examined how

plasticity might contribute to the invasive success of Z.

bFig. 2 A Rate of range expansion of D. suzukii in Europe and

USA Source Asplen et al. 2015; CABI 2014. B Rate of range

expansion of Z. indianus in the Americas. C Rate of range

expansion of D. subobscura in the Americas
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indianus. By comparing the reaction norms for wing

size and shape across five different growth tempera-

tures, Loh et al. (2008) demonstrated that the Brazilian

population (from the colder climate) was significantly

larger than the African one. More interestingly, they

also found that the shape of the thermal response curve

was different; the temperature at which size was

maximum was about 3 �C higher in the warmer

African population compared to the Brazilian popu-

lation. These results are consistent with those obtained

in D. melanogaster (Morin et al. 1999, cited earlier)

and suggest that genetically based differences in

plasticity may contribute to divergence during an

invasion.

Thus, the recent invasion of Zaprionus indianus in

America constitutes a highly informative system for

investigating the evolutionary processes that underpin

the invasive process. The rapid evolution of latitudinal

clines in key traits in India highlights the importance

of local selective forces in driving adaptive diver-

gence, and studies conducted in Brazil confirm that

evolutionary processes can occur over very short time-

frames. Continuing this kind of study, and in particular

following the rate of local adaptation in Brazil, will be

a very exciting area of research. It would be also very

interesting to investigate the extent to which pheno-

typic plasticity is contributing to the successful

invasion of this species by considering more traits,

types of environments and populations.

Drosophila subobscura Collin in Gordon (1936)

(Fig. 2C)

Drosophila subobscura belongs to the obscura species

group of the subgenus Sophophora of Drosophila.

Until 1978,D. subobscurawas a Paleartic species with

a geographic distribution extending from northern

Africa to southern Scandinavia (Prevosti et al. 1988).

At that time,D. subobscurawas found for the first time

in Puerto Montt, Chile (Brncic and Budnik 1980)

where it then quickly spread all over Chile (Brncic

et al. 1981) and up the Atlantic coast of Argentina

(López 1985). In North America, it was observed for

the first time in 1982 in Port Townsend (WA) in the

northwest US (Beckenbach and Prevosti 1986) and

then quickly spread to the south (Davis, California in

1983) and east (Provo, Utah 1998) (Beckenbach and

Prevosti 1986; Noor 1998). The colonization of the

Americas by D. subobscura was considered ‘a grand

experiment in evolution’ (Ayala et al. 1989), and was

analyzed from its earliest stages (Brncic et al. 1981;

Beckenbach and Prevosti 1986). It provided an

excellent opportunity to investigate both evolutionary

mechanisms operating in nature and the species

ecology in the invaded region (Pascual et al. 1993;

Noor 1998; Huey and Pascual 2009; Gibert et al.

2010). The colonization of this vast area was sequen-

tial with only a few effective founders first introduced

to South America with a subsequent larger set

reaching North America without noticeable secondary

founder events (Pascual et al. 2007). This resulted in

particularly low genetic diversity, however secondary

bottlenecks were detected in their subsequent expan-

sion to harsher environments within each new colo-

nized area (Noor et al. 2000; Fernández Iriarte et al.

2009). Despite their low diversity, the species has

proved able to adapt to highly diverse environmental

conditions and respond rapidly to global warming

(Balanyà et al. 2006). Rapid latitudinal changes in

chromosomal inversion frequencies were observed

after a few years of its introduction, on both continents

and in the same direction as in the native Old World,

providing strong experimental support for their adap-

tive value (Prevosti et al. 1988). Initial continuous

surveys in the colonized area suggested that these

clines were still evolving and converging towards the

Old World baseline (Prevosti et al. 1990). Thus the

evolution of inversion frequency clines seemed pre-

dictable and remarkably rapid. However, posterior

surveys showed that inversion clines did not consis-

tently increase in steepness over time nor continue to

converge (Balanyà et al. 2003) but rather weakened

and even changed sign, suggesting that active behav-

ioral thermoregulation might buffer environmental

variation (Castañeda et al. 2013; Huey and Pascual

2009). However other processes could be responsible

for this lack of continued convergence. The strong

bottleneck due to the founder event (Pascual et al.

2007), the strong linkage disequilibrium between

inversions and several genetic markers (Mestres

et al. 1995; Gómez-Baldó et al. 2008) and the

recombination reduction mediated by inversions

observed in D. subobscura (Pegueroles et al. 2010)

could cause an impoverishment of genetic variation,

with an overall reduction of haplotypes in introduced

flies relative to ancestral ones, therefore reducing the

capacity to evolve steeper clines. Similarly the

persistence of lethal genes in the colonizing
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populations, completely or partially associated with

chromosomal inversions, suggests that those arrange-

ments, despite carrying a lethal gene, could have a

heterotic effect on the heterokaryotypes, reducing

their fitness over time (Mestres et al. 2001), and also

constraining ongoing clinal evolution. If this is the

case, little additional evolution would be expected in

the invading populations unless new coadapted gene

complexes arise as indicated by Balanyà et al. (2003).

Other traits have also been investigated, with

several studies on wing size in D. subobscura reveal-

ing a pronounced latitudinal cline in wing size among

ancestral European populations (Pegueroles et al.

1995). One decade after the introduction, no signifi-

cant latitudinal clines in wing size had evolved in

either North or South America (Pegueroles et al.

1995). However only two decades after the introduc-

tion, clines in wing size had evolved in the two

invaded hemispheres (Huey et al. 2000; Gilchrist et al.

2004), largely converging on the ancestral cline. Even

more interesting, these authors observed that while

overall clinal patterns of wing size were similar, the

region of the wing that generated the size cline for

females differed among all three continents; the

European cline was obtained through changing the

proximal portion of the wing, the North American

cline was the result of changes in the distal portion of

the wing, whereas in South America both parts of the

wing contributed to the cline (Gilchrist et al. 2004).

The results for the South American populations may in

part reflect the fact that different associations between

wing shape and chromosomal inversions are observed

in native and colonizing (South American) popula-

tions, which have been related to the founder event

(Fragata et al. 2010).

The D. subobscura invasion enabled both diachro-

nic and synchronic rates of evolution to be quantified

for both American continents. Although estimation of

allochronic rates requires an actual time series,

whereas synchronic rates of evolution are computed

from divergent populations sampled at a single time

(Hendry and Kinnison 1999), both were similar in

magnitude (Gilchrist et al. 2004). On both continents,

the highest allochronic rates of evolution were gener-

ally at the highest latitude populations in accordance

with the Mediterranean region of Europe being the

most likely source of the New World founders

(Pascual et al. 2007). A meta-analysis of microevolu-

tion on contemporary time scales in nature revealed a

tendency towards increasing evolutionary diversifica-

tion with time and a decrease of evolutionary rates

(Kinnison and Hendry 2001). Experimental evolution

studies also enable investigation of the colonization

processes and can be readily applied in Drosophila.

For instance the impact of founder effects on evolu-

tionary dynamics during laboratory adaptation in D.

subobscura have shown significantly higher rate of

decline in genetic variability during the first few

generations in the laboratory along with a higher rate

of change at several life history traits (Simões et al.

2008; Santos et al. 2012) supporting the hypothesis

that evolution slows when populations approach new

optima or as genetic variation is depleted (Kinnison

and Hendry 2001). Unfortunately the evolution of

fitness related traits in D. subobscura have only been

analyzed using native populations. It would be very

interesting to study the evolutionary dynamics of

colonized populations under similar laboratory con-

ditions to further examine how evolutionary trajecto-

ries change over time.

Unfortunately, the role of phenotypic plasticity in

the successful invasion of D. subobscura has not been

investigated.

Conclusions and perspectives

In conclusion, Drosophila species, which are typically

used as animal models in many biological disciplines,

are also powerful models for studying the evolutionary

mechanisms that underpin adaptation to new environ-

ments (Balanyà et al. 2006; Santos et al. 2012),

including biological invasions. While much work has

already been carried out on two invasive species, D.

subobscura and Z. indianus, there is still great

potential to use these species, and other Drosophila,

to further understand biological invasion processes.

The two examples detailed in this paper clearly

demonstrate that rapid adaption to environmental

change is possible. However, in many invasive insects,

the genetic basis of this adaptation (and the role that

phenotypic plasticity undertakes) is not well known.

The role of genetic variation in the success of invaders

can be investigated by focusing on divergence in

quantitative traits known to affect performance in

different environments, and divergence in genetic

markers (Simões et al. 2012). Recent advances in

genomic (RAD-Seq, GBS) and transcriptomic (RNA-
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Seq) approaches have been developed providing more

powerful tools to better understand the genetic basis of

invasion (review in Chown et al. 2015). While some of

these new technologies can be used on non-model

organisms that lack a reference genome assembly, the

existence of reference genomes will nonetheless greatly

facilitate insight into the genomic basis of invasion.

The importance of phenotypic plasticity in the

invasion process remains poorly documented. Study-

ing phenotypic plasticity should ideally involve

assessments of phenotypic responses over several

environmental conditions (Murren et al. 2014), such as

over the complete thermal range of a particular species

(which may be best considered through the use of

latitudinal clines). While such studies are perhaps

considered labour intensive (e.g. several lines/geno-

types assessed at several temperatures), they will be

necessary to understand the importance of plasticity in

successful invasions. Moreover, important questions

that must be resolved when investigating phenotypic

plasticity such as which environmental factors to use

(e.g. temperature, humidity, photoperiod) and which

traits to focus on, must also be considered. Further,

many studies on Drosophila have focused on devel-

opmental (irreversible) plasticity of morphometrical

traits (e.g. David et al. 2004) but reversible plasticity

of behavioral or physiological traits may also have an

important role to play during invasions (i.e. Rego et al.

2010). Finally, the ecological relevance of the labo-

ratory and assay conditions will also be important to

determine, to ensure that the results can be extrapo-

lated to field situations (e.g. Terblanche et al. 2011).

This requires some insight into the ecology of the

investigated species, which traditionally has been

largely lacking in Drosophila studies. Indeed, it is

interesting to note that in contrast to the level of detail

provided with respect to their molecular and develop-

mental biology, the ecology of most Drosophila

species is typically neglected and not reported.

Understanding the rate of change in levels of

phenotypic plasticity during invasion is also particu-

larly important. It has been argued that phenotypic

plasticity, by allowing introduced populations to

survive under new environmental conditions, can

provide the necessary time for new, adaptively impor-

tant genetic variants to arise (Pigliucci 2005; Lande

2015). If the new selection pressures persist in the new

environment, we may expect to observe a decrease in

the plasticity and a ‘genetic assimilation’ of the trait(s).

Such mechanisms that could be common during the

well-known ‘lag phase’ of biological invasions, have to

our knowledge not yet been documented. The very

recent invasion of Europe and North America by D.

suzukii, although apparently not related (Adrion et al.

2014), would constitute a perfect empirical system

with which to address this question.

Finally, invasions enable the predictability of

evolution to be empirically assessed by comparing

the rate of adaptive shifts in the native and invaded

range. Such comparisons have been performed to

some degree in D. subobscura. However, once again,

the simultaneous invasion of North America and

Europe by the Asian species D. suzukii provides the

opportunity to compare the mechanisms of this

successful invasion in two different regions at the

same time. Moreover, D. suzukii is a pest of small and

stone fruits with huge economic impacts in both

America and Europe, and in that respect is the target of

on-going important monitoring that should allow the

collection of accurate information on its ecology. For

all these reasons, we think that D. suzukii constitutes

the perfect biological model with which to compre-

hensively examine the evolutionary and ecological

processes that underpin successful invasions, espe-

cially for insects but also for the field as a whole.
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to different climates results in divergent phenotypic plas-

ticity of wing size and shape in an invasive drosophilid.

J Genet 87:209–217

Lombaert E, Guillemaud T, Cornuet JM, Malausa T, Facon B,

Estoup A (2010) Bridgehead effect in the worldwide

invasion of the biocontrol harlequin ladybird. PLoS ONE

5:e9743
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Mestres F (1988) Colonization of America by Drosophila

subobscura: experiment in natural populations that sup-

ports the adaptive role of chromosomal-inversion poly-

morphism. Proc Natl Acad Sci USA 85:5597–5600

Prevosti A, Serra L, Segarra C, Aguade M, Ribo G, Monclus M

(1990) Clines of chromosomal arrangements ofDrosophila

subobscura in South America evolve closer to Old World

patterns. Evolution 44:218–221

Rego C, Blanya J, Fragata I, Matos M, Rezende EL, Santos M

(2010) Clinal pattern of chromosomal inversion polymor-

phisms in Drosophila subobscura are partly associated

with thermal preferences and heat stress resistance. Evo-

lution 64:385–397

Renkema JM, Miller M, Fraser H, Legare JP, Hallett RH (2013)

First records of Zaprionus indianus Gupta (Diptera:

Drosophilidae) from commercial fruit fields in Ontario and

Quebec, Canada. J Entomol Soc Ont 144:125–130

Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M

(2006) Jack of all trades, master of some? On the role of

phenotypic plasticity in plant invasions. Ecol Lett 9:981–993

Sakai AK, Allendorf FW, Holt JS, Lodge DM,Molofsky J, With

KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC,

Mccauley DE, O’Neil P, Parker IM, Thompson JN, Weller

SG (2001) The population biology of invasive species. Ann

Rev Ecol Syst 32:305–332

Santos J, Pascual M, Simões P, Fragata I, Lima M, Kellen B,

Santos M, Marques A, Rose MR, Matos M (2012) From

nature to the laboratory: the impact of founder effects on

adaptation. J Evol Biol 25:2607–2622

Sawyer LA (1997) Natural variation in a Drosophila clock gene

and temperature compensation. Science 278:2117–2120

Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic

diversity may allow saltcedar to invade cold climates in

North America. Ecol Appl 12:1652–1660
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Simberloff D, Rejmánek M (2011) Encyclopedia of biological

invasions. University of California Press, Berkeley and Los

Angeles

Simões P, Pascual M, Santos J, Rose MR, Matos M (2008)

Evolutionary dynamics of molecular markers during local

adaptation: a case study in Drosophila subobscura. BMC

Evol Biol 8:66

Simões P, Calabria G, Picão-Osório J, Balanyà J, Pascual M
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